Criteria

Text:
Sector:
Author:
Display:

Results

Viewing 1 to 30 of 66
2004-03-08
Technical Paper
2004-01-0571
Miguel M. Gomez, Victor H. Mucino, Nigel Clark, James E. Smith
Continuously variable transmissions (CVTs) are usually used in small vehicles due to power limitations on the variable elements. Continuously variable power-split transmissions (CVPST) were developed in order to reduce the fraction of power passing through the variable elements [1,2]. The configuration presented in this paper includes a planetary gear train (PGT), which in combination with the CVT allows the power to be split and therefore increase the power envelope of the system. The PGT also provides a branch that can be used in a hybrid electric vehicle (HEV) operation through an electric motor. A conceptual design of a CVPST for a HEV is presented in this paper. The objectives are to show the different operational modes, with diagrams, perform a power analysis, develop the velocity and force equations and finally show the performance of the system with an example application.
2014-04-01
Journal Article
2014-01-1099
Matthew C. Robinson, Nigel Clark
Conventional crank-based engines are limited by mechanical, thermal, and combustion inefficiencies. The free piston of a linear engine generator reduces frictional losses by avoiding the rotational motion and crankshaft linkages. Instead, electrical power is generated by the oscillation of a translator through a linear stator. Because the free piston is not geometrically constrained, dead center positions are not specifically known. This results in a struggle against adverse events like misfire, stall, over-fueling, or rapid load changes. It is the belief that incorporating springs will have the dual benefit of increasing frequency and providing a restoring force to aid in greater cycle to cycle stability. For dual free piston linear engines the addition of springs has not been fully explored, despite growing interest and literature.
1999-10-25
Technical Paper
1999-01-3525
Paul Norton, Mike Frailey, Nigel Clark, Donald W. Lyons, Mridul Gautam, J. McKinley Addy, N. John Beck
Emissions from trucks and buses equipped with Caterpillar dual-fuel natural gas (DFNG) engines were measured at two chassis dynamometer facilities: the West Virginia University (WVU) Transportable Emissions Laboratory and the Los Angeles Metropolitan Transportation Authority (LA MTA). Emissions were measured over four different driving cycles. The average emissions from the trucks and buses using DFNG engines operating in dual-fuel mode showed the same trends in all tests - reduced oxides of nitrogen (NOx) and particulate matter (PM) emissions and increased hydrocarbon and carbon monoxide (CO) emissions - when compared to similar diesel trucks and buses. The extent of NOx reduction was dependent on the type of test cycle used.
2012-05-15
Journal Article
2011-01-2440
Derek Johnson, Louise Ayre, Nigel Clark, Thomas Balon, Paul Moynihan
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
2010-10-05
Technical Paper
2010-01-1968
Idowu Olatunji, Scott Wayne, Mridul Gautam, Nigel Clark, Gregory Thompson, David McKain, Petr Sindler, John Nuszkowski
Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (PD). Emissions differences between vehicles operated on biodiesel blends and on diesel have been published previously, but data do not cover the latest engine technologies. Prior studies have shown that biodiesel offers advantages in reducing particulate matter, with either no advantage or a slight disadvantage for oxides of nitrogen emissions. This paper describes a recent study on the emissions impact of two biodiesel blends B20A, made from 20% animal fat (tallow) biodiesel and 80% PD, and B20B, obtained from 20% soybean biodiesel and 80% PD. These blends used the same PD fuel for blending and were contrasted with the same PD fuel as a reference. The research was conducted on a 2007 medium heavy-duty diesel truck (MHDDT), with an engine equipped with Exhaust Gas Recirculation (EGR) and a Diesel Particulate Filter (DPF).
2010-10-05
Technical Paper
2010-01-1967
Nigel Clark, David L. McKain, Petr Sindler, Ronald Jarrett, John Nuszkowski, Mridul Gautam, W Wayne, Gregory Thompson, Ricky Sonny
Fuel economy and regulated emissions were measured from eight forty-foot transit buses operated on petroleum diesel and a “B20” blend of 80% diesel fuel and 20% biodiesel by volume. Use of biodiesel is attractive to displace petroleum fuel and reduce an operation's carbon footprint. Usually it is assumed that biodiesel will also reduce particulate matter (PM) emissions relative to those of petroleum diesel. Model years of the vehicles evaluated were newer 2007-08 Gillig low-floor buses, 2005 Gillig Phantom buses, and a 2002 Gillig Phantom bus. Engine technology represented three different emissions standards, and included buses with OEM diesel particulate filters. Each bus was evaluated using two transient speed-time schedules, the Orange County Transit Authority (OCTA) driving schedule which represents moderate speed urban/suburban operation and the Urban Dynamometer Driving Schedule (UDDS) which represents a mix of suburban and higher speed on-highway operation.
2005-04-11
Technical Paper
2005-01-0234
Matt M. Swartz, Chamila A. Tissera, Emre Tatli, Ramprabhu Vellaisamy, Nigel Clark, Gregory J. Thompson, Richard J. Atkinson
Understanding the nitric oxide (NO) conversion process plays a major role in optimizing the Selective NOX Recirculation (SNR) technique. SNR has been proven in gasoline and diesel engines, with up to 90% NOX conversion rates being achieved. This technique involves adsorbing NOX from an exhaust stream, then selectively desorbing the NOX into a concentrated NOX stream, which is fed back into the engine's intake, thereby converting a percentage of the concentrated NOX stream into harmless gases. The emphasis of this paper is on the unique chemical kinetic modeling problem that occurs with high concentrations of NOX in the intake air of a spark ignited natural gas engine with SNR. CHEMKIN, a chemical kinetic solver software package, was used to perform the reaction modeling. A closed homogeneous batch reactor model was used to model the fraction of NOX versus time for varying initial conditions and constants.
2005-04-11
Technical Paper
2005-01-1861
Michael Block, Nigel Clark, Scott Wayne, Ralph Nine, William Miller
Increasingly stringent oxides of nitrogen (NOx) and particulate matter (PM) regulations worldwide have prompted considerable activity in developing emission control technology to reduce the emissions of these two constituents from heavy-duty diesel engines. NOx has come under particular scrutiny by regulators in the US and in Europe with the promulgation of very stringent regulation by both the US Environmental Protection Agency (EPA) and the European Union (EU). In response, heavy-duty engine manufacturers are considering Selective Catalytic Reduction (SCR) as a potential NOx reduction option. While SCR performance has been well established through engine dynamometer evaluation under laboratory conditions, there exists little data characterizing SCR performance under real-world operating conditions over time. This project evaluated the field performance of ten SCR units installed on heavy-duty Class 8 highway and refuse trucks.
2005-04-11
Technical Paper
2005-01-0370
Ramprabhu Vellaisamy, Nigel Clark, Gregory J. Thompson, Richard J. Atkinson, Chamila A. Tissera, Matt M. Swartz
Emissions from diesel engines, particularly NOx and TPM emissions are harmful to the environment. Reduction of NOx emissions from diesel engines is of increasing concern. In 1998, a novel approach called Selective NOx Recirculation (SNR) was used to reduce NOx emissions in diesel engines. The SNR concept relies on two major parts, one to collect the NOx emissions from the exhaust by an adsorber, and another to decompose NOx using the in-cylinder combustion process by injecting the collected NOx emissions into the intake manifold at an elevated concentration. This paper deals with the destruction rates during the combustion process. A 1992 DDC series 60, 350 hp, 12.7 liter engine was connected to a 500 hp DC dynamometer. A full-scale dilution tunnel and analyzers capable of measuring continuous NOx, CO2, CO, HC, and PM in the exhaust were used.
2004-10-25
Technical Paper
2004-01-3022
Kuntal A. Vora, Nigel Clark, Ralph D. Nine, Mridul Gautam, W. Scott Wayne, Gregory J. Thompson, Donald W. Lyons
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
2005-04-11
Technical Paper
2005-01-1618
Kuntal A. Vora, Nigel Clark, Mridul Gautam, W. Scott Wayne
When heavy-duty truck emissions rates are expressed in distance-specific units (such as g/mile), average speed and the degree of transient behavior of the vehicle activity can affect the emissions rate. Previous one-dimensional studies have shown some correlation of distance-specific emissions rates between cycles. This paper reviews emissions data sets from the 5-mode CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Schedule, the Heavy Duty Urban Dynamometer Driving Schedule (UDDS) and an inspection and maintenance cycle, known as the AC5080. A heavy-duty chassis dynamometer was used for emissions characterization along with a full-scale dilution tunnel. The vehicle test weights were simulated at 56,000 lbs. Two-dimensional correlations were used to predict the emissions rate on one mode or cycle from the rates of two other modes or cycles.
2010-10-05
Technical Paper
2010-01-2001
Lijuan Wang, Nigel Clark, Pingen Chen
Heavy-duty trucks are an important sector to evaluate when seeking fuel consumption savings and emissions reductions. With fuel costs on the rise and emissions regulations becoming stringent, vehicle manufacturers find themselves spending large amounts of capital improving their products in order to be compliant with regulations. The Powertrain System Analysis Toolkits (PSAT), developed by the Argonne National Laboratory (ANL), is a simulation tool that helps mitigate costs associated with research and automotive system design. While PSAT has been widely used to predict the fuel consumption and exhaust emissions of conventional and hybrid light-duty vehicles, it also may be employed to test heavy-duty vehicles. The intent of this study was to develop an accurate model that predicts emissions and fuel economy for heavy-duty vehicles for use within PSAT.
2005-10-24
Technical Paper
2005-01-3769
Teresa L. Alleman, Robb Barnitt, Leslie Eudy, Matt Miyasato, Adewale Oshinuga, Tom Corcoran, Sougato Chatterjee, Todd Jacobs, Ralph A. Cherrillo, Nigel Clark, W. Scott Wayne
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
2007-10-29
Technical Paper
2007-01-4074
Francisco Posada, Clint Bedick, Nigel Clark, Aleksandr Kozlov, Martin Linck, Dmitri Boulanov, John Pratapas
The key to overcoming Low Temperature Combustion (LTC) load range limitations is based on suitable control over the thermo-chemical properties of the in-cylinder charge. The proposed alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel, with different autoignition characteristics, is a reformed product of the primary fuel in the tank. It is proposed in this paper that the secondary fuel is produced using Thermo-Chemical Recuperation (TCR) with steam/fuel reforming. The steam/fuel mixture is heated by sensible heat from the engine exhaust gases in the recuperative reformer, where the original hydrocarbon reacts with water to form a hydrogen rich gas mixture. An equilibrium model developed by Gas Technology Institute (GTI) for n-heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures.
2007-08-05
Technical Paper
2007-01-3626
Nigel Clark, ABM S. Khan, W. Scott Wayne, Mridul Gautam, Gregory J. Thompson, David L. McKain, Donald W. Lyons, Ryan Barnett
Transit agencies across the United States operate bus fleets primarily powered by diesel, natural gas, and hybrid drive systems. Passenger loading affects the power demanded from the engine, which in turn affects distance-specific emissions and fuel consumption. Analysis shows that the nature of bus activity, taking into account the idle time, tire rolling resistance, wind drag, and acceleration energy, influences the way in which passenger load impacts emissions. Emissions performance and fuel consumption from diesel and natural gas powered buses were characterized by the West Virginia University (WVU) Transportable Emissions Testing Laboratory. A comparison matrix for all three bus technologies included three common driving cycles (the Braunschweig Cycle, the OCTA Cycle, and the ADEME-RATP Paris Cycle). Each bus was tested at three different passenger loading conditions (empty weight, half weight, and full weight).
2009-11-02
Technical Paper
2009-01-2672
Yuebin Wu, Nigel Clark, Daniel Carder, Benjamin Shade
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
2009-11-02
Technical Paper
2009-01-2652
David L. McKain, Nigel Clark, Richard J. Atkinson, Zac J. Luzader, Bradley Rutledge
Yard hostlers are tractors (switchers) used to move containers at ports and storage facilities. While many speed-time driving cycles for assessing emissions and performance from heavy-duty vehicles exist, a driving cycle representative of yard hostler activity at Port of Long Beach, CA was not available. Activity data were collected from in-use yard hostlers as they performed ship loading/unloading, rail loading/unloading and other yard routines, primarily moving containers on trailers or carts. The activity data were then used to develop four speed-time driving cycles with durations of 1200 seconds, representing light and heavy ship activities and light and heavy load rail activities. These cycles were constructed using actual speed-time data collected during activity logging and the cycles created were statistically comparable to each subset of activity data.
2008-06-23
Technical Paper
2008-01-1679
Nigel Clark, Clinton R. Bedick, Lijuan Wang, Gregory Thompson, David McKain, Bradley Ralston
Most transient heavy duty diesel emissions data in the USA have been acquired using the Federal Test Procedure (FTP), a heavy-duty diesel engine transient test schedule described in the US Code of Federal Regulations. The FTP includes both urban and freeway operation and does not provide data separated by driving mode (such as rural, urban, freeway). Recently, a four-mode engine test schedule was created for use in the Advanced Collaborative Emission Study (ACES), and was demonstrated on a 2004 engine equipped with cooled Exhaust Gas Recirculation (EGR). In the present work, the authors examined emissions using these ACES modes (Creep, Cruise, Transient and High-speed Cruise) and the FTP from a Detroit Diesel Corporation (DDC) Series 60 1992 12.7 liter pre-EGR engine. The engine emissions were measured using full exhaust dilution, continuous measurement of gaseous species, and filter-based Particulate Matter (PM) measurement.
2008-06-23
Journal Article
2008-01-1751
Emre Tatli, Nigel Clark
In 2007, US EPA implemented the rule that the crankcase emissions be added to the tailpipe emissions to determine the total emissions from a diesel engine if the crankcase were not closed, but few data exist to quantify crankcase emissions from earlier model diesel engines. This paper presents the results of a study on the measurement of the size distribution and number concentration of particulate matter (PM) emitted from the crankcase vents from four different diesel engines under different engine speeds and loads. The engines used in the study were a 1992 Detroit Diesel Series 60, a 1996 Caterpillar 3406E, a 1997 Cummins B5.9 and a 1995 Mack E7-400. The Detroit Diesel engine was tested on an engine dynamometer and crankcase and tailpipe particulates were observed at varying engine speeds and loads. The other three engines were mounted in vehicles, and crankcase PM was observed at several engine speeds with no external load.
2007-01-23
Technical Paper
2007-01-0054
Nigel Clark, W. Scott Wayne, ABM S. Khan, Donald W. Lyons, Mridul Gautam, David L. McKain, Gregory J. Thompson, Ryan Barnett
Although diesel engines still power most of the heavy-duty transit buses in the United States, many major cities are also operating fleets where a significant percentage of buses is powered by lean-burn natural gas engines. Emissions from these buses are often expressed in distance-specific units of grams per mile (g/mile) or grams per kilometer (g/km), but the driving cycle or route employed during emissions measurement has a strong influence on the reported results. A driving cycle that demands less energy per unit distance than others results in higher fuel economy and lower distance-specific oxides of nitrogen emissions. In addition to energy per unit distance, the degree to which the driving cycle is transient in nature can also affect emissions.
2007-01-23
Technical Paper
2007-01-0060
Yuebin Wu, Nigel Clark, Daniel Carder, Gregory J. Thompson, Mridul Gautam, Donald W. Lyons
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
2007-04-16
Technical Paper
2007-01-0310
John Nuszkowski, Gregory J. Thompson, Nigel Clark
As emission regulations become increasingly strict, the need for more accurate sampling systems becomes essential. When calculating emissions from a dilution system, a correction is made to remove the effects of contaminants in the dilution air. The dilution air correction was explored to determine why this correction is needed, when this correction is important, and what methods are available for calculating the dilution factor (DF). An experimental and error analysis investigation into the standard and recently proposed methods for calculating the DF was conducted. Five steady state modes were run on a 1992 Detroit Diesel engine series 60 and the DF from eleven different equations were investigated. The effects of an inaccurate dilution air correction on calculated fuel flow from a carbon balance and the mass emissions was analyzed. The dilution air correction was shown to be important only for hydrocarbons, particulate matter (PM), and CO2.
2006-10-16
Technical Paper
2006-01-3372
Nigel Clark, Emre Tatli, Ryan Barnett, W. Scott Wayne, David L. McKain
In 2007, the Environmental Protection Agency will begin measuring not only exhaust emissions from diesel engines, but also emissions from the crankcase if it is not vented into the engine intake. The 2007 government standards for emissions of carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and particulate matter (PM) will also become more restrictive. There is the additional concern that crankcase emissions from present day trucks and buses may impact the quality of air inside the vehicle. This paper presents data to characterize crankcase emissions and examines a crankcase emissions abatement system (CEAS), the New Condensator®, manufactured by World NCI. Rather than allowing crankcase emissions to leave via a vent tube, a CEAS re-circulates the emissions to the intake of the engine.
2006-10-16
Technical Paper
2006-01-3395
Nigel Clark, Mridul Gautam, W. Scott Wayne, Gregory J. Thompson, Ralph D. Nine, Donald W. Lyons, Thomas Buffamonte, Shuhong Xu, Hector Maldonado
Heavy duty diesel vehicle (HDDV) emissions are known to affect air quality, but few studies have quantified the real-world contribution to the inventory. The objective of this study was to provide data that may enable ambient emissions investigators to m,odel the air quality more accurately. The 25 vehicles reported in this paper are from the first phase of a program to determine representative regulated emissions from Heavy Heavy-Duty Diesel Trucks (HHDDT) operating in Southern California. Emissions data were gathered using a chassis dynamometer, full flow dilution tunnel, and research grade analyzers. The subject program employed two truck test weights and four new test modes (one was idle operation), in addition to the Urban Dynamometer Driving Schedule (UDDS), and the AC50/80 cycle. The reason for such a broad test cycle scope was to determine thoroughly how HHDDT emissions are influenced by operating cycle to improve accuracy of models.
2006-10-16
Technical Paper
2006-01-3394
David L. McKain, Richard J. Atkinson, Nigel Clark, Victor H. Mucino, J Víctor Hugo Páramo Figueroa, Sergio Zirath Hernández Villaseñor, Cesar Fausto Gálvez Hernández, Enrique Rivero Borrel, Rodrigo Perrusquía Máximo, Daniel León Cervantes
It is difficult to project the emissions performance of a vehicle on a route unless the test cycle used to gain the emissions data reasonably represents that route. A chassis dynamometer emissions measurement test schedule consisting of three modes (congested, non-congested and bus rapid transit (BRT) operation) was developed for use in a program to evaluate transit bus technologies in Mexico City. Existing buses were fitted with global positioning system (GPS) data loggers and, between September 2nd and 8th of 2004, 54 hours of speed-time data were collected while the buses were operated over several bus routes in Mexico City. The data set was then broken down into individual micro-trips, each consisting of an idle period followed by the bus traveling some distance, followed by a final deceleration to idle.
2006-10-16
Technical Paper
2006-01-3393
Gregory J. Thompson, John C. Gibble, Nigel Clark, Mridul Gautam
The 1998 Consent Decrees between the settling heavy-duty diesel engine manufacturers and the United States Government require the engine manufacturer to perform in-use emissions testing to evaluate their engine designs and emissions when the vehicle is placed into service. This additional requirement will oblige the manufacturer to account for real-world conditions when designing engines and engine control algorithms and include driving conditions, ambient conditions, and fuel properties in addition to the engine certification test procedures. Engine operation and ambient conditions can be designed into the engine control algorithm. However, there will most likely be no on-board determination of fuel properties or composition in the near future. Therefore, the engine manufacturer will need to account for varying fuel properties when developing the engine control algorithm for when in-use testing is performed.
2004-10-25
Technical Paper
2004-01-2904
Nigel Clark, Mridul Gautam, W. Scott Wayne, Wesley Riddle, Ralph D. Nine, Donald W. Lyons, Shuhong Xu
Repeatable measurement of real-world heavy-duty diesel truck emissions requires the use of a chassis dynamometer with a test schedule that reasonably represents actual truck use. A new Heavy Heavy-Duty Diesel Truck (HHDDT) schedule has been created that consists of four modes, termed Idle, Creep, Transient and Cruise. The effect of driving style on emissions from the Transient Mode was studied by driving a 400 hp Mack tractor at 56,000 lbs. test weight in fashions termed “Medium”, “Good”, “Bad”, “Casual” and “Aggressive”. Although there were noticeable differences in the actual speed vs. time trace for these five styles, emissions of the important species oxides of nitrogen (NOx) and particulate matter (PM), varied little with a coefficient of variation (COV) of 5.13% on NOX and 10.68% on PM. Typical NOx values for the HHDDT Transient mode ranged from 19.9 g/mile to 22.75 g/mile. The Transient mode which was the most difficult mode to drive, proved to be repeatable.
2007-04-16
Technical Paper
2007-01-1080
Mario G. Perhinschi, W. Scott Wayne, Nigel Clark, Donald W. Lyons
West Virginia University has conducted research to characterize the emissions from medium-duty vehicles operating on Fischer-Tropsch synthetic gas-to-liquid compression ignition fuel. The West Virginia University Transportable Heavy Vehicle Emissions Testing Laboratory was used to collect data for gaseous emissions (carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbon) while the vehicles were exercised through a representative driving schedule, the New York City Bus Cycle (NYCB). Artificial neural networks were used to model emissions to enhance the capabilities of computer-based vehicle operation simulators. This modeling process is presented in this paper. Vehicle velocity, acceleration, torque at rear axel, and exhaust temperature were used as inputs to the neural networks. For each of the four gaseous emissions considered, one set of training data and one set of validating data were used, both based on the New York City Bus Cycle.
1992-02-01
Technical Paper
920057
Kristine Craven, Nigel Clark, James E. Smith
The recent oil crisis has once again emphasized the need to develop both fuel efficient engines and alternately fueled engines, particularly for automotive applications. Engines which burn coal or coal pyrolysis products are attractive, but ignition delay and metal erosion problems continue to limit high speed operation of such engines. Further, the throttled spark ignition engine often used with methanol and natural gas does not prove an efficient or tolerant device for the combustion of a wide range of fuel. Therefore, an novel approach must be taken in order to achieve the efficient and flexible operation of such an engine. A novel design of a fuel tolerant engine suitable for burning coal fuels separates the combustion from the piston in order to have more careful flame control and to exclude the particulate matter from the engine's piston rings.
1999-04-27
Technical Paper
1999-01-2251
Nigel Clark, Mridul Gautam, Donald Lyons, Chris Atkinson, Wenwei Xie, Paul Norton, Keith Vertin, Stephen Goguen, James Eberhardt
Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California #2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NOx) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state #2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without.
Viewing 1 to 30 of 66

Filter

  • Range:
    to:
  • Year: