Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession

2009-04-20
2009-01-1356
Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Journal Article

Estimation of deviations in NO and soot emissions between steady-state and EUDC transient operation of a common-rail diesel engine

2009-09-13
2009-24-0147
The study measured Mass Air Flow, (MAF), Manifold Absolute Pressure, (MAP), and emissions of NO and soot during fourteen transients of speed and load, representative of the Extra Urban Drive Cycle (EUDC). The tests were conducted on a typical passenger car/light-duty truck powertrain (a turbocharged common-rail diesel engine, of in-line 4-cylinder configuration). The objective was to compare NO and soot with corresponding steady-state emission results and propose an engine measurement methodology that will potentially quantify deviation (i.e. deterioration with respect to steady state optimum) in emissions of NO and soot during transients. Comparison between steady state, quasi-steady-states (defined later in the paper) and transients indicated that discrete quasi-steady-state engine operation, can be used for accurate prediction of transient emissions of NO and soot.
Journal Article

Liquid Jet Deformation Induced by Cavitation in Nozzles of Various Shapes

2009-09-13
2009-24-0157
Cavitation in the nozzles of various shapes and liquid jets discharged from the nozzles are visualized using a high-speed camera to investigate the effects of cavitation on liquid jet deformation. Cylindrical nozzles and two-dimensional (2D) nozzles of various upstream diameters and length-to-diameter ratios (L/D) are used. For simultaneous high-speed visualizations of cavitation and a jet, a tilted acrylic plate is placed in front of the jets injected through the 2D nozzles, while three mirrors are used to capture both the front view of the jet injected through a cylindrical nozzle and the side view of cavitation. The visualizations confirm that the collapse of a cavitation cloud near the exit induces a ligament formation in 2D and cylindrical nozzles of various L/Ds. Although no vapor film is formed in short nozzles, cavitation clouds are shed near the exit and induce ligaments.
Journal Article

Investigating Control of Vision Based Autonomous Navigation in the Image Plane

2010-10-05
2010-01-2005
This paper develops a novel integrated navigational system for autonomous vehicle motion control. Vehicle control is defined in terms of the required vehicle steering angle, rate of steering change and speed. This paper proposes predictive control in the image plane. The proposed predictive control enables the navigation on the desired path, reduces the control complexity and increases the application space for multiple types of vehicles. The paper investigates vehicle control stability; especially in scenarios containing varying curvature turns and variable vehicle speeds. The primary emphasis of this paper is on vehicle control rather than scene analysis. To demonstrate the proposed vehicle control, a computer vision based multi-lane detection algorithm is introduced. The control strategy is applied such that the vehicle maintains position within the lane boundaries. Stability of the control algorithm is tested and demonstrated in multiple scenarios using 3-D simulation results.
Journal Article

Characterization of Palm Fiber for Development of Biocomposites Material for Automotive Industries

2010-10-05
2010-01-2029
The physical and optical properties viz., water absorption pattern, density, color and opacity of oil palm fiber-LLDPE composites were studied. The effect of fiber size, fiber loading and fiber treatment on the above parameters was also studied. Alkali treatment on fibers was done to reduce the hydrophilic nature of composites. It was found that the water absorption in most of the combinations followed typical fickian behavior. The rate of water absorption and swelling increased with fiber loading. However alkali treatment on fibers resulted in reduction of water absorption at higher fiber loading only and composites with higher fiber size exhibited higher water absorption. True density of oil palm fiber-LLDPE composites were in the range of 967-1177 kg m-₃, whereas the bulk density ranged from 942-1122 kg m-₃. The dielectric constant of the composite was in the range of 3.22 to 6.73.
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Journal Article

Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine

2010-10-25
2010-01-2254
An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 μm. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.
Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

2010-10-25
2010-01-2253
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Journal Article

An In-cylinder Laser Absorption Sensor for Crank-angle-resolved Measurements of Gasoline Concentration and Temperature

2010-10-25
2010-01-2251
Simultaneous crank-angle-resolved measurements of gasoline concentration and gas temperature were made with two-color mid-infrared (mid-IR) laser absorption in a production spark-ignition engine (Nissan MR20DE, 2.0L, 4 cyl, MPI with premium gasoline). The mid-IR light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug. The absorption line-of-sight was a 5.3 mm optical path located closely adjacent to the ignition spark providing spatially resolved absorption. Two sensor wavelengths were selected in the strong bands associated with the carbon-hydrogen (C-H) stretching vibration near 3.4 μm, which have an absorption ratio that is strongly temperature dependent. Fuel concentration and temperature were determined simultaneously from the absorption at these two wavelengths.
Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Journal Article

Scuffing Resistance of Surface Treated 8625 Alloy Steels

2011-04-12
2011-01-0034
Scuffing is a common source of failure for many mechanical components in automobiles. 8625 alloy steel is commonly used in camshafts, gears, piston pins, shafts, and splines. The purpose of the research is to study the scuffing resistance of non-treated, carburized, nitrocarburized, and carbonitrided 8625 alloy steels. The scuffing resistance of the 8625 alloy steels was determined through pin-on-disk tests. The hardness and microstructure of the disks were analyzed using electron microscopy to determine wear mechanisms for each surface treated steel. The wear mechanisms were then related to the scuff resistance of the various materials.
Journal Article

Experimental Investigation of Droplet Dynamics and Spray Atomization inside Thermostatic Expansion Valves

2011-04-12
2011-01-0129
In this paper, experimental investigation on spray atomization and droplet dynamics inside a thermostatic expansion valve (TXV), a component commonly used in vehicle refrigeration system, was conducted. A needle and an orifice were copied from a commercial TXV and machined to be mounted inside a chamber with optical access so that the flow inside the TXV is simulated and visualized at the same time. The break-up and atomization of the refrigerant were documented near the downstream of the orifice under different feed conditions for two TXV with different geometry. A Phase Doppler Anemometry (PDA) system was used later to measure the size and velocity of atomized refrigerant droplets. The results showed that the droplet size variation along the radial direction is slightly decreased at near downstream and increased at farther downstream due to the coalescence.
Journal Article

An Optical Study of Mixture Preparation in a Hydrogen-fueled Engine with Direct Injection Using Different Nozzle Designs

2009-11-02
2009-01-2682
Mixture formation in an optically accessible hydrogen-fueled engine was investigated using Planar Laser-Induced Fluorescence (PLIF) of acetone as a fuel tracer. The engine was motored and fueled by direct high-pressure injection. This paper presents the evolution of the spatial distribution of the ensemble-mean equivalence ratio for six different combinations of nozzle design and injector geometry, each for three different injection timings after intake-valve closure. Asymmetric single-hole and 5-hole nozzles as well as symmetric 6-hole and 13-hole nozzles were used. For early injection, the low in-cylinder pressure and density allow the jet to preserve its momentum long enough to undergo extensive jet-wall and (for multi-hole nozzles) jet-jet interaction, but the final mixture is fairly homogeneous. Intermediately timed injection yields inhomogeneous mixtures with surprisingly similar features observed for all multi-hole injectors.
Journal Article

Effect of Swirl Ratio and Wall Temperature on Pre-lnjection Chemiluminescence During Starting of an Optical Diesel Engine

2009-11-02
2009-01-2712
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
X