Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

2016-09-18
2016-01-1145
Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Empirical Modeling of Transient Emissions and Transient Response for Transient Optimization

2009-04-20
2009-01-1508
Empirical models for engine-out oxides of Nitrogen (NOx) and smoke emissions have been developed for the purpose of minimizing transient emissions while maintaining transient response. Three major issues have been addressed: data acquisition, data processing and modeling method. Real and virtual transient parameters have been identified for acquisition. Accounting for the phase shift between transient engine events and transient emission measurements has been shown to be very important to the quality of model predictions. Several methods have been employed to account for the transient transport delays and sensor lags which constitute the phase shift. Finally several different empirical modeling methods have been used to determine the most suitable modeling method for transient emissions. These modeling methods include several kinds of neural networks, global regression and localized regression.
Journal Article

Current and New Approaches for Brake Noise Evaluation and Rating

2009-10-11
2009-01-3037
Predominant brake noise evaluation and rating was developed many years ago and no longer fulfills the need of modern development work. An extended description of a noisy brake event (European expert group guideline EKB 3006) and a standardized test data exchange format, allowing the comparison of different source test results (EKB 3008) are presented. Today's noise rating systems are described and compared by selected examples. The paper proposes an open 4 level noise rating system (EKB 3007). It starts with simple occurrence statistics, noise rating based on sound levels, situational noise rating including duration and finally based on the human perception, described by psychoacoustics.
Journal Article

Estimation of deviations in NO and soot emissions between steady-state and EUDC transient operation of a common-rail diesel engine

2009-09-13
2009-24-0147
The study measured Mass Air Flow, (MAF), Manifold Absolute Pressure, (MAP), and emissions of NO and soot during fourteen transients of speed and load, representative of the Extra Urban Drive Cycle (EUDC). The tests were conducted on a typical passenger car/light-duty truck powertrain (a turbocharged common-rail diesel engine, of in-line 4-cylinder configuration). The objective was to compare NO and soot with corresponding steady-state emission results and propose an engine measurement methodology that will potentially quantify deviation (i.e. deterioration with respect to steady state optimum) in emissions of NO and soot during transients. Comparison between steady state, quasi-steady-states (defined later in the paper) and transients indicated that discrete quasi-steady-state engine operation, can be used for accurate prediction of transient emissions of NO and soot.
Journal Article

Improving Driver Safety through Naturalistic Data Collection and Analysis Methods

2010-10-19
2010-01-2333
The design of a safe transportation system requires numerous design decisions that should be based on data acquired by rigorous scientific method. Naturalistic data collection and analysis methods are a relatively new addition to the engineer's toolbox. The naturalistic method is based on unobtrusively monitoring driver and vehicle performance under normal, everyday, driving conditions; generally for extended collection periods. The method generates a wealth of data that is particularly well-suited for identifying the underlying causes of safety deficiencies. Furthermore, the method also provides robust data for the design and evaluation of safety enhancement systems through field studies. Recently the instrumentation required to do this type of study has become much more cost effective allowing larger numbers of vehicles to be instrumented at a fraction of the cost. This paper will first provide an overview of the naturalistic method including comparisons to other available methods.
Journal Article

Construction and Use of Surrogate Models for the Dynamic Analysis of Multibody Systems

2010-04-12
2010-01-0032
This study outlines an approach for speeding up the simulation of the dynamic response of vehicle models that include hysteretic nonlinear tire components. The method proposed replaces the hysteretic nonlinear tire model with a surrogate model that emulates the dynamic response of the actual tire. The approach is demonstrated via a dynamic simulation of a quarter vehicle model. In the proposed methodology, training information generated with a reduced number of harmonic excitations is used to construct the tire hysteretic force emulator using a Neural Network (NN) element. The proposed approach has two stages: a learning stage, followed by an embedding of the learned model into the quarter car model. The learning related main challenge stems from the attempt to capture with the NN element the behavior of a hysteretic element whose response depends on its loading history.
Journal Article

Effect of Manifold Orientation on Non-Reacting In-Cylinder Tumble Flows in an IC Engine with Pentroof Piston - An Investigation Using PIV

2010-04-12
2010-01-0956
This paper deals with experimental study of in-cylinder tumble flows in a single-cylinder, four-stroke, two-valve internal combustion engine using a pentroof-offset-bowl piston under non-reacting conditions with four intake manifold orientations at an engine speed of 1000 rev/min., during suction and compression strokes using particle image velocimetry. Two-dimensional in-cylinder tumble flow measurements and analysis are carried out in combustion space on a vertical plane passing through cylinder axis. Ensemble average velocity vectors are used to analyze the tumble flows. Tumble ratio (TR) and average turbulent kinetic energy (TKE) are evaluated and used to characterize the tumble flows. From analysis of results, it is found that at end of compression stroke, 90° intake manifold orientation shows an improvement in TR and TKE compared other intake manifold orientations considered.
Journal Article

Virtual Testing and Correlation for a Motorcycle Design

2010-04-12
2010-01-0925
Two-poster rig plays a very important role in accelerated durability evaluation in a motorcycle industry, similar to what a four-poster rig does in a car industry. The rig simulates the exact road conditions in the vertical direction through tire coupling by applying feedback control on displacement. On account of its ability to simulate to the exact customer usage conditions, it reproduces the failures realistically as it happens on the field. However, as complete vehicle is required for testing on the rig, the testing happens mostly in the advanced stages of product development. Any failures beyond the concept stage have a huge impact on the development time and cost and the same should be avoided. Therefore, in this paper, a virtual testing methodology is proposed, based on which potential failures on the vehicles can be captured at the concept design stage itself. An ADAMS model of a motorcycle was created.
Journal Article

Efficient Approximate Methods for Predicting Behaviors of Steel Hat Sections Under Axial Impact Loading

2010-04-12
2010-01-1015
Hat sections made of steel are frequently encountered in automotive body structural components such as front rails. These components can absorb significant amount of impact energy during collisions thereby protecting occupants of vehicles from severe injury. In the initial phase of vehicle design, it will be prudent to incorporate the sectional details of such a component based on an engineering target such as peak load, mean load, energy absorption, or total crush, or a combination of these parameters. Such a goal can be accomplished if efficient and reliable data-based models are available for predicting the performance of a section of given geometry as alternatives to time-consuming and detailed engineering analysis typically based on the explicit finite element method.
Journal Article

Dynamic Response of Vehicle Roof Structure and ATD Neck Loading During Dolly Rollover Tests

2010-04-12
2010-01-0515
The debate surrounding roof deformation and occupant injury potential has existed in the automotive community for over 30 years. In analysis of real-world rollovers, assessment of roof deformation and occupant compartment space starts with the post-accident roof position. Dynamic movement of the roof structure during a rollover sequence is generally acknowledged but quantification of the dynamic roof displacement has been limited. Previous assessment of dynamic roof deformation has been generally limited to review of the video footage from staged rollover events. Rollover testing for the evaluation of injury potential has typically been studied utilizing instrumented test dummies, on-board and off-board cameras, and measurements of residual crush. This study introduces an analysis of previously undocumented real-time data to be considered in the evaluation of the roof structure's dynamic behavior during a rollover event.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Journal Article

Online Engine Speed Based Adaptation of Air Charge for Two- Wheelers

2013-10-15
2013-32-9037
Regarding the strongly growing two-wheeler market fuel economy, price and emission legislations are in focus of current development work. Fuel economy as well as emissions can be improved by introduction of engine management systems (EMS). In order to provide the benefits of an EMS for low cost motorcycles, efforts are being made at BOSCH to reduce the costs of a port fuel injection (PFI) system. The present paper describes a method of how to reduce the number of sensors of a PFI system by the use of sophisticated software functions based on high-resolution engine speed evaluation. In order to improve the performance of a system working without a MAP-sensor (manifold air pressure sensor) an air charge feature (ACFn) based on engine speed is introduced. It is shown by an experiment that ACFn allows to detect and adapt changes in manifold air pressure. Cross-influences on ACFn are analyzed by simulations and engine test bench measurements.
Journal Article

Reduced-Order Modeling of Intake Air Dynamics in Single-Cylinder Four-Stroke Engine

2013-10-15
2013-32-9041
This study deals with reduced-order modeling of intake air dynamics in single-cylinder four-stroke naturally-aspirated spark-ignited engines without surge tanks. It provides an approximate calculation method for embedded micro computers to estimate intake manifold pressures in real time. The calculation method is also applicable to multi-cylinder engines with individual throttle bodies since the engines can be equated with parallelization of the single-cylinder engines. In this paper, we illustrate the intake air dynamics, describe a method to estimate the intake manifold pressures, and show experimental results of the method.
Journal Article

A Study on Modeling of Driver's Braking Action to Avoid Rear-End Collision with Time Delay Neural Network

2014-04-01
2014-01-0201
Collision avoidance systems for rear-end collisions have been researched and developed. It is necessary to activate collision warnings and automatic braking systems with appropriate timing determined by a monitoring system of a driver's braking action. Although there are various systems to monitor driving behavior, this study aims to create a monitoring system using a driver model. This study was intended to construct a model of a driver's braking action with the Time Delay Neural Network (TDNN). An experimental scenario focuses on rear-end collisions on a highway, such as the driver of a host vehicle controlling the brake to avoid a collision into a leading vehicle in a stationary condition caused by a traffic jam. In order to examine the accuracy of the TDNN model, this study used four parameters: the number of learning, the number of neurons in the hidden layer, the sampling time with 0.01 second as a minimum value, and the number of the delay time.
Journal Article

Experimental Investigation of Fuel Impingement and Spray-Cooling on the Piston of a GDI Engine via Instantaneous Surface Temperature Measurements

2014-04-01
2014-01-1447
In order to comply with more and more stringent emission standards, like EU6 which will be mandatory starting in September 2014, GDI engines have to be further optimized particularly in regard of PN emissions. It is generally accepted that the deposition of liquid fuel wall films in the combustion chamber is a significant source of particulate formation in GDI engines. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction [1]. In order to quantify this temperature drop at combustion chamber surfaces, surface temperature measurements on the piston of a single-cylinder engine were conducted. Therefore, eight fast-response thermocouples were embedded 0.3 μm beneath the piston surface and the signals were transmitted from the moving piston to the data acquisition system via telemetry.
Journal Article

Experimental Investigation of Channel Aspect Ratio on Interdigitated PEMFC Performance

2014-04-01
2014-01-1828
Novel water management and reactant distribution strategies are critical to next generation polymer electrolyte membrane fuel cell systems (PEMFCs). Improving these strategies in PEMFCs leads to higher power density and reduced stack size for vehicle applications, which reduces weight and improves the price competitiveness of these systems. Interdigitated flow fields induce convective transport (cross flow) through the porous GDL between adjacent channels and are superior at water removal beneath land areas, which can lead to higher cell performance. However, the head loss due to flow, among other factors, may cause cross flow maldistribution of reactants down the channel. Such maldistribution may lead to areas of low or areas of excess cross flow. This, in turn, can cause areas of low oxygen concentration and water build up, and therefore higher pressure losses and uneven membrane hydration, all of which reduce overall cell performance.
Journal Article

The Big Data Application Strategy for Cost Reduction in Automotive Industry

2014-09-30
2014-01-2410
Cost reduction in the automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OEMs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in the automotive industry dramatically improved production efficiency in past ten years, they are still facing the pressure of cost control. The big challenge in cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs create constraints for the traditional economic expansion model.
Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Journal Article

Prediction of the Sound Absorption Performance of Polymer Wool by Using Artificial Neural Networks Model

2014-04-01
2014-01-0889
This paper proposes a new method of predicting the sound absorption performance of polymer wool using artificial neural networks (ANN) model. Some important parameters of the proposed model have been adjusted to best fit the non-linear relationship between the input data and output data. What's more, the commonly used multiple non-linear regression model is built to compare with ANN model in this study. Measurements of the sound absorption coefficient of polymer wool based on transfer function method are also performed to determine the sound absorption performance according to GB/T18696. 2-2002 and ISO10534- 2: 1998 (E) standards. It is founded that predictions of the new model are in good agreement with the experiment results.
X