Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Review of Prior Studies of Fuel Effects on Vehicle Emissions

2009-04-20
2009-01-1181
A literature review was conducted to survey recent research on the effects of fuel properties on exhaust emissions from gasoline and diesel vehicles, on-road and off-road. Most of the literature has been published in SAE papers, although data have also been reported in other journals and government reports. A full report and database are available from the Coordinating Research Council (www.crcao.org). The review identified areas of agreement and disagreement in the literature and evaluated the adequacy of experimental design and analysis of results. Areas where additional research would be helpful in defining fuel effects are also identified. In many of the research programs carried out to evaluate the effect of new blendstocks, the fuel components were splash blended in fully formulated fuels. This approach makes it extremely difficult to determine the exact cause of the emissions benefit or debit.
Journal Article

Identification and Robust Control of LPG Fuel Supply System

2009-04-20
2009-01-1025
This paper proposes a new returnless LPG fuel supply system designed to increase the efficiency of current LPG engines. With a conventional engine fuel supply system, the fuel pump is driven at a certain speed to pressurize the fuel to an excessive level, and excess fuel that is discharged from the fuel pump but not injected from the injector is returned to the fuel tank via a pressure regulator and a return line. This arrangement keeps the pressure in the fuel supply line at a constant level. Accordingly, during engine idling, fuel cut-off or other times when very little or no fuel is injected from the injector, nearly all the fuel discharged from the fuel pump is returned to the fuel tank via the pressure regulator and return line. Therefore, the energy (electric power) applied to drive the fuel pump is wastefully consumed. Moreover, returning a large amount of excess fuel to the fuel tank can raise the fuel temperature in the tank, causing the fuel to evaporate.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Fuel Economy Benefits of a Flywheel & CVT Based Mechanical Hybrid for City Bus and Commercial Vehicle Applications

2009-10-06
2009-01-2868
Hybrid drivetrain systems are becoming increasingly prevalent in Automotive and Commercial Vehicle applications and have also been introduced for the 2009 Formula1 motorsport season. The F1 development has the clear intent of directing technical development in motorsport to impact the key issue of fuel efficiency in mainstream vehicles. In order to promote all technical developments, the type of system (electrical, mechanical, hydraulic, etc) for the F1 application has not been specified. A significant outcome of this action is renewed interest and development of mechanical hybrid systems comprising a high speed composite flywheel and a full-toroidal traction drive Continuously Variable Transmission (CVT). A flywheel based mechanical hybrid has few system components, low system costs, low weight and dispenses with the energy state changes of electrical systems producing a highly efficient and power dense hybrid system.
Journal Article

Real Time Implementation of DOC-DPF Models on a Production-Intent ECU for Controls and Diagnostics of a PM Emission Control System

2009-10-06
2009-01-2904
This paper describes the joint development by Tenneco and Pi Shurlok of a complete diesel engine aftertreatment system for controlling particulate matter emissions. The system consists of a DOC, DPF, sensors, controller and an exhaust fuel injection system to allow active DPF regeneration. The mechanical components were designed for flow uniformity, low backpressure and component durability. The overall package is intended as a complete PM control system solution for OEMs, which does not require any significant additions to the OEM's engine control strategies and minimizes integration complexity. Thus, to make it easier to adapt to different engine platforms, ranging from small off-road vehicle engines to large locomotive engines, model-based control algorithms were developed in preference to map-based controls.
Journal Article

Energy Efficiency Analysis of Monolith and Pellet Emission Control Systems in Unidirectional and Reverse-Flow Designs

2009-09-13
2009-24-0155
The work aims at analysing the energetic performances of monolith and pellet emission control systems using unidirectional and reverse-flow design (passive and active flow control respectively). To this purpose a one-dimensional transient model has been developed and the cooling process of different system configurations has been studied. The influence of the engine operating conditions on the system performances has been analysed and the fuel saving capability of the several arrangements has been investigated. The analysis showed that the system with active reverse flow and pellet packed bed design presents higher heat retention capability. Moreover, the numerical model put in evidence the large influence of the exhaust gas temperature on the energy efficiency of the emission control systems and the significant effect of unburned hydrocarbons concentration.
Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Journal Article

Parameter Estimation for Physical Based Air Path Models of Turbocharged Diesel Engines — An Experience Based Guidance

2009-09-13
2009-24-0134
Physical based air path models lead to a substructuring of the highly complex engine systems into several interacting submodels of low order. They offer detailed process information, support advanced control system design and allow to significantly reduce the calibration effort. Hence, physical approaches are predestinated to cope with the rise in system complexity and with the increasingly challenging demands concerning air system performance. Whereas the basic model equations are known a general methodology to obtain the model parameters is lacking. The purpose of this paper is to shed light on the identification procedure and to offer the automotive engineer helpful advice to gain well calibrated simulation models. Analysing the air path equations the determining factors on the parameter quality are investigated. Based on the results sensible modifications of the test bed setup and the measurement strategy are presented.
Journal Article

25cc HCCI Engine Fuelled with DEE

2009-06-15
2009-01-1771
This paper describes the set-up and testing of a single cylinder 25cc, air cooled, 4-stroke Spark Ignition (SI) engine converted to run in Homogeneous Charge Compression Ignition (HCCI) mode with the aid of various combustion control systems. The combustion control systems were investigated regarding their effects on combustion stability and heat release phasing. Engine operation was compared with unique findings from previous work done on a very small 2-stroke HCCI engine. HCCI engine operation was possible between 1000 - 4000 rpm when using Diethyl Ether (DEE) as the test fuel. Maximum operational fuel-air equivalence ratio (Φ) was 0.75 when operating without Exhaust Gas Recirculation (EGR). This relatively high equivalence ratio was attainable due to thermal gradients induced by the high surface area to volume ratio of the small engine combustion chamber, resulting in high chamber heat transfer.
Journal Article

Experimental Procedure for Measuring the Energy Consumption of IC Engine Lubricating Pumps during a NEDC Driving Cycle

2009-06-15
2009-01-1919
The paper presents an experimental procedure for comparing different families of IC Engine lubricating pumps in terms of total consumed energy in a NEDC driving cycle. Measures are performed on a test rig able to reproduce the oil temperature profile, the lubrication circuit permeability and its variation during the engine warm-up. The pump under test is driven by a variable speed electric motor supplying the engine velocity profile of the driving cycle. The load on the pump is generated by means of a variable restrictor controlled in a closed loop by a proper combination of speed, temperature, flow rate and pressure signals in order to replicate the typical permeability of the lubricating circuit.
Journal Article

Residual Stress Analysis of Punched Holes in 6013 Aluminum Alloy Commercial Vehicle Side Rails

2010-10-05
2010-01-1909
Compliance with tighter emission regulations has increased the proportion of parasitic weight in commercial vehicles. In turn, the amount of payload must be reduced to comply with transportation weight requirements. A re-design of commercial vehicle components is necessary to decrease the vehicle weight and improve payload capacity. Side rails have traditionally been manufactured from high strength steels, but significant weight reductions can be achieved by substituting steel side rails with 6013 high strength aluminum alloy side rails. Material and stress analyses are presented in this paper in order to understand the effect of manufacturing process on the material's mechanical behavior. Metallographic and tensile test experiments for the 6013-T4 alloy were performed in preparation for residual stress measurements of a punching operation. Punched holes are critical to the function of the side rail and can lead to high stress levels and cracking.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Enabling Safety and Mobility through Connectivity

2010-10-19
2010-01-2318
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) networks within the Intelligent Transportation System (ITS) lead to safety and mobility improvements in vehicle road traffic. This paper presents case studies that support the realization of the ITS architecture as an evolutionary process, beginning with driver information systems for enhancing feedback to the users, semi-autonomous control systems for improved vehicle system management, and fully autonomous control for improving vehicle cooperation and management. The paper will also demonstrate how the automotive, telecom, and data and service providers are working together to develop new ITS technologies.
Journal Article

Tire Sensors for the Measurement of Slip Angle and Friction Coefficient and Their Use in Stability Control Systems

2011-04-12
2011-01-0095
Intelligent tires are envisioned to be an important part of the future vehicle control systems and the three dimensional wireless MEMS accelerometers embedded inside the tire stand out as a promising candidate for the development of intelligent tires. The first part of the paper focuses on accelerometer based tire sensors for the estimation of slip angle and tire/road friction coefficient. We use a simple tire finite element model to generate lateral, tangential and radial tire accelerations for a fixed load and slip angle. The profiles are validated by using experimental data. The simulated acceleration profiles are used for the estimation of slip angle and tire/road friction coefficient. We present the estimation algorithms, promising simulative results and output sensitivities studies focused on the effects of changes in normal load, tire pressure and vehicle velocity.
Journal Article

Applications of Tuning Fork Resonators for Engine Oil, Fuel, Biodiesel Fuel and Urea Quality Monitoring

2009-11-02
2009-01-2639
Based on a Tuning Fork flexural resonator, an innovative, miniaturized and rugged sensor that directly and simultaneously measures a fluid’s dynamic viscosity, density and dielectric constant has been developed. The sensor provides a simultaneous fluid temperature measurement by incorporating a temperature sensor into the sensor assembly. The physical property measurements for viscosity, density and dielectric constant are accomplished by high performance algorithms that provide direct feedback to Engine Control Module (ECM), Urea SCR, fuel and other fluid management systems. Based on these data, realtime modification of engine or system operation can be made to optimize power, efficiency, oil drain management and emissions depending on the fluid and control system that integrates the sensor. Single parameter sensors like electrical property sensors fail to provide sufficient information to accurately monitor fluid quality or degradation.
Journal Article

Development of Driving Control System Based on Optimal Distribution for a 6WD/6WS Vehicle

2010-04-12
2010-01-0091
This paper describes a driving controller to improve vehicle lateral stability and maneuverability for a six wheel driving / six wheel steering (6WD/6WS) vehicle. The driving controller consists of upper and lower level controller. The upper level controller based on sliding control theory determines front, middle steering angle, additional net yaw moment and longitudinal net force according to reference velocity and steering of a manual driving, remote control and autonomous controller. The lower level controller takes desired longitudinal net force, yaw moment and tire force information as an input and determines additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and has considered the friction circle related to vertical tire force and friction coefficient acting on the road and tire.
Journal Article

An Integrated Design Method for Articulated Heavy Vehicles with Active Trailer Steering Systems

2010-04-12
2010-01-0092
This paper presents an integrated design method for active trailer steering (ATS) systems of articulated heavy vehicles (AHVs). Of all contradictory design goals of AHVs, two of them, i.e. path-following at low speeds and lateral stability at high speeds, may be the most fundamental and important, which have been bothering vehicle designers and researchers. To tackle this problem, a new design synthesis approach is proposed: with design optimization techniques, the active design variables of ATS systems and passive design variables of trailers can be optimized simultaneously; the ATS controller derived from this approach has two operational modes, one for improving lateral stability at high speeds and the other for enhancing path-following at low speeds. To demonstrate the effectiveness of the proposed approach, it is applied to the design of an ATS system for an AHV with a tractor and a full trailer.
Journal Article

Adhesion Control Method Based on Fuzzy Logic Control for Four-Wheel Driven Electric Vehicle

2010-04-12
2010-01-0109
The adhesion control is the basic technology of active safety for the four-wheel driven EV. In this paper, a novel adhesion control method based on fuzzy logic control is proposed. The control system can maximize the adhesion force without road condition information and vehicle speed signal. Also, the regulation torque to prevent wheel slip is smooth and the vehicle driving comfort is greatly improved. For implementation, only the rotating speed of the driving wheel and the motor driving torque signals are needed, while the derived information of the wheel acceleration and the skid status are used. The simulation and road test results have shown that the adhesion control method is effective for preventing slip and lock on the slippery road condition.
Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
X