Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

2009-04-20
2009-01-1423
A realistic modeling of the wall heat transfer is essential for an accurate analysis and simulation of the working cycle of internal combustion engines. Empirical heat transfer formulations still dominate the application in engine process simulations because of their simplicity. However, experiments have shown that existing correlations do not provide satisfactory results for all the possible operation modes of hydrogen internal combustion engines. This paper describes the application of a flow field-based heat transfer model according to Schubert et al. [1]. The models strength is a more realistic description of the required characteristic velocity; considering the influence of the injection on the global turbulence and on the in-cylinder flow field results in a better prediction of the wall heat transfer during the compression stroke and for operations with multiple injections. Further an empirical hypothesis on the turbulence generation during combustion is presented.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Well-To-Wheels Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

2009-04-20
2009-01-1309
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model incorporated fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). Based on PSAT simulations of the blended charge depleting (CD) operation, grid electricity accounted for a share of the vehicle’s total energy use ranging from 6% for PHEV 10 to 24% for PHEV 40 based on CD vehicle mile traveled (VMT) shares of 23% and 63%, respectively. Besides fuel economy of PHEVs and type of on-board fuel, the type of electricity generation mix impacted the WTW results of PHEVs, especially GHG emissions.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Journal Article

Analysis of Compromising Degree of an Internal Combustion Engine Using Biodiesel

2009-04-20
2009-01-0895
This work intends to present a study about the application of a standard methodology for the evaluation of the mechanical components compromise as result of the use of biodiesel, based on the lubricating oil analyses. The fuel oil that will be analyzed is produced in PUCRS' Faculty of Chemistry. As we know, the physical-chemical analysis of lubricating oils can indicate a series of parameters that allow valuing the quality and the compromising degree of the mechanical engine components. The results of these analyses will be based on tests in an Electronic Microscopy. This type of analysis will allow us to determine the quality of the lubricating oil, degradation and contamination with metal materials (mechanical compromising). The work presupposes the functioning of Diesel engine cycle with several proportions of biodiesel (B2, B5, B10, B20 and B100).
Journal Article

Identification and Robust Control of LPG Fuel Supply System

2009-04-20
2009-01-1025
This paper proposes a new returnless LPG fuel supply system designed to increase the efficiency of current LPG engines. With a conventional engine fuel supply system, the fuel pump is driven at a certain speed to pressurize the fuel to an excessive level, and excess fuel that is discharged from the fuel pump but not injected from the injector is returned to the fuel tank via a pressure regulator and a return line. This arrangement keeps the pressure in the fuel supply line at a constant level. Accordingly, during engine idling, fuel cut-off or other times when very little or no fuel is injected from the injector, nearly all the fuel discharged from the fuel pump is returned to the fuel tank via the pressure regulator and return line. Therefore, the energy (electric power) applied to drive the fuel pump is wastefully consumed. Moreover, returning a large amount of excess fuel to the fuel tank can raise the fuel temperature in the tank, causing the fuel to evaporate.
Journal Article

Treatment of Vehicle Emissions from the Combustion of E85 and Gasoline with Catalyzed Hydrocarbon Traps

2009-04-20
2009-01-1080
Ethanol has been gaining attention as a partial substitute in North American pump gasoline in amounts up to 85% ethanol and 15% gasoline, or what is commonly known as “E85”. The problems with E85 fuel for cold start emissions relative to gasoline fuel are the lower energy density and vapor pressure for combustion. Each contributes to excess E85 fuel injected during cold start for comparable combustion quality and drivability to gasoline. The excess emissions occur before the first three-way catalyst (TWC) converter is warmed-up and active for engine-out exhaust conversion. The treatment of non-methane organic gas (NMOG) emissions from the combustion of E85 and gasoline was evaluated using several different zeolite based hydrocarbon (HC) traps coated with different precious metal loadings and ratios. These catalyzed HC traps were evaluated in a flow reactor and also on a gasoline Partial Zero Emissions Vehicle (PZEV) with experimental flexible fuel capability.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model

2009-04-20
2009-01-0931
In this work, a quasi-dimensional, multi-zone combustion model is analytically presented, for the prediction of performance and nitric oxide (NO) emissions of a homogeneous charge spark ignition (SI) engine, fueled with biogas-H2 blends of variable composition. The combustion model is incorporated into a closed cycle simulation code, which is also fully described. Combustion is modeled on the basis of turbulent entrainment theory and flame stretch concepts. In this context, the entrainment speed, by which unburned gas enters the flame region, is simulated by the turbulent burning velocity of a flamelet model. A flame stretch submodel is also included, in order to assess the flame response on the combined effects of curvature, turbulent strain and nonunity Lewis number mixture. As far as the burned gas is concerned, this is treated using a multi-zone thermodynamic formulation, to account for the spatial distribution of temperature and NO concentration inside the burned volume.
Journal Article

Model Based E85 Cold Start Optimization for DISI Engines

2009-06-15
2009-01-1909
The startability of SI engines, especially of DISI engines, is the greatest challenge when using ethanol blended fuels. The development of a suitable injection strategy is therefore the main engineering target when developing an ethanol engine with direct injection. In order to limit the test efforts of such a program, a vaporization model has been created that provides the quantity of vaporized fuel depending on pressure and on start and end, respectively number and split relation of injections. This model takes account of the most relevant fuel properties such as density, surface tension and viscosity. It also considers the interaction of the spray with cylinder liner, cylinder head and piston. A comparison with test results shows the current status and the need for action of this simulation model.
Journal Article

Influence of a Multispark Ignition System on the inflammation in a Spray-guided Combustion Process

2009-09-13
2009-24-0117
This study describes tests with a fast clocked multispark ignition system intended to improve the stability of inflammation during charge stratification. The advantage of this ignition system is the capability it provides to adjust the number of sparks, the duration of single sparks and the intensity of the primary current. The basic engine test parameters were first set in an optically accessible pressure chamber under conditions approximating an engine. Two strategies were examined to analyze their effect on inflammation in stratified charge mode. On the one hand, the multispark ignition (MSI) system allows implementing an intermittent spark sequence in the spark gap between the spark plug electrodes. On the other hand, precisely timed pulsing of spark energy into the plasma channel during charge motion can generate a very large deflection of the ignition spark.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Journal Article

Emissions of 2-Stroke Scooters with Ethanol Blends

2009-09-13
2009-24-0143
A well balanced use of alternative fuels is an important objective for a sustainable development of individual transportation worldwide. Several countries have objectives to substitute a part of the energy of traffic by ethanol as the renewable energy source. Investigations of limited and unregulated emissions of two 2-S scooters with gasoline-ethanol blend fuels have been performed in the present work according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network (since 2000). The investigated fuels contained ethanol (E), in the portion of 5, 10, 15 and 20% by volume. The investigated 2-S scooters represented a newer and an older 2-stroke technology with carburettor. The newer one was investigated with and without catalyst and the older one only in the original state without catalyst.
Journal Article

Off-road Emission Performance of SUV with Diesel and Natural Gas Powertrain

2009-09-13
2009-24-0144
This study is based on a project which addresses the reduction of CO2 and pollutant emissions of off-road vehicles. For this purpose the use of CNG drive trains in high alpine areas is an interesting alternative to the standard diesel technology. The same SUV with CNG and diesel powertrain has been measured and methodically compared with regard to fuel consumption and exhaust emission performance. These real-world measurements have shown the potential when applying a CNG concept for this utilization. Subsequently, the real-world on-board measurements were compared with the results of a simulation program for SUV off-road performance.
Journal Article

Real-world Emission Monitoring of Natural Gas Vehicles with Higher Mileage

2009-09-13
2009-24-0151
This study evaluates the potential of CNG propulsion systems for long-term operation. For this purpose, light and medium duty vehicles as well as passenger cars with very different service performance were investigated under real-world conditions. The research also includes tests of a vehicle with natural gas and bio-methane to assess the effects of the energy supply on the performance. The demonstration and evaluation of CNG operational fleets with higher mileage provide a sustainable monitoring of clean propulsion systems based on innovative real-world in-car measurements. A benchmarking to the same passenger car with diesel powertrain was done as well. For a consistent comparison of the different test vehicles, the results for each drive test are presented as emission rates versus the mean vehicle speed.
Journal Article

A Thermodynamic Evaluation of the Use of Alcohol Fuels in a Spark-Ignition Engine

2009-11-02
2009-01-2621
Although the use of alcohol fuels in spark-ignition engines has been investigated for over 100 years, consistent and thorough thermodynamic evaluations are few. The current work examines the detail thermodynamics of the use of methanol and ethanol by an automotive, spark-ignition engine. Overall engine performance parameters, detail instantaneous quantities, and second law parameters are determined as functions of engine design and operating conditions. In addition, the results for the alcohol fuels are compared to results for isooctane. Results include indicated and brake efficiencies, heat transfer, and exhaust gas temperatures as functions of engine speed and load. Operating conditions include constant equivalence ratio (stoichiometric), MBT spark timing, and constant burn duration. In general, the thermodynamic results are similar for the alcohol fuels and isooctane.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
X