Refine Your Search

Topic

Author

Search Results

Standard

Generator Terminal Labeling

2001-04-26
CURRENT
J1416_200104
This SAE Recommended Practice recommends a common naming convention to be used to designate the terminals on automotive generators found in internal combustion engine road vehicles. The intent is to standardize the terminology in use. This document is not intended to include hybrid and/or electric vehicles.
Standard

Heavy Truck and Bus Retarder Downhill Performance Mapping Procedure

2000-05-01
CURRENT
J1489_200005
The procedure covers the estimation of the total retardation capability available to a specific vehicle from: a Natural retardation (rolling resistance, aerodynamic drag, etc). b Engine drag c Engine, integral automatic transmission, driveline or trailer-axle retarders It assumes that foundation brakes are not used for maintaining speed on long mountain descents. Retardation is rated in terms of the maximum grades on which stable control speeds can be maintained for each gear over the range of highway speeds appropriate to that gear. For each gear, the calculation procedure determines maximum grades for at least four values of control speed ranging from the vehicle velocity corresponding to full load governed engine rpm, to the vehicle velocity corresponding to the engine rpm at minimum (idle) speed. In addition, the calculation procedure provides information on the total retarding power available for each gear.
Standard

Definition and Measurement of Torque Biasing Differentials

2008-08-26
HISTORICAL
J2817_200808
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear and planetary types although other configurations are possible.
Standard

Definition and Measurement of Torque Biasing Differentials

2019-08-26
CURRENT
J2817_201908
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear, and planetary types, although other configurations are possible.
Standard

Measuring Properties of Li-Ion Battery Electrolyte

2021-01-27
CURRENT
J3042_202101
This SAE Recommended Practice provides a set of test methods for characterizing lithium-ion battery electrolytes. These test methods are applicable to existing electrolyte materials and allow different facilities to conduct testing in a common manner. Solid electrolytes are expected to be commercially used for large scale batteries in the future. However, characterizing solid electrolytes may require methods different from those contained in this document. Such methods are not addressed in this document. It is not within the scope of this document to establish acceptance criteria for test results, as this is usually established between the vendor and customer. It is also not within the scope of this document to examine the electrochemical properties of an electrolyte, since these are influenced by electrolyte composition. In addition, establishing an electrolyte composition appropriate for all applications is not feasible.
Standard

Hydrogen Vehicle Crash Test Lab Safety Guidelines

2022-02-23
CURRENT
J3121_202202
The scope of this document is to provide an overview of the risks and protective precautions to ensure safe and effective testing procedures for the test personnel and the vehicle during the testing of a hydrogen fuel cell vehicle. The main risks associated with a hydrogen fuel cell vehicle are the fuel cell stack, hydrogen storage vessel, fuel cell system components and the high voltage battery. Risks could be summarized from the battery into thermal runaway possibly leading to fire or explosion, electrolyte spillage and electrical shock or electrocution. The hydrogen fuel cell system risks include electrical shock or electrocution and possible release of hydrogen gas (if tested with). Vehicle crash testing protection should be coordinated with the system or component manufacturer(s) suggestions. Precautions should be taken with the handling, transportation, and storage of the vehicle pre-crash and post-crash.
Standard

Recommended Practice for Determining Material Properties of Li-Battery Cathode Active Materials

2021-05-28
CURRENT
J3021_202105
This SAE Recommended Practice provides a set of test methods and practices for the characterization of lithium ion battery cathode active material. It is beyond the scope of this document to establish criteria for the test results, as these are usually established between the vendor and customer. It should be noted that materials properties can vary substantially between classes of materials (e.g., LNO and LFP) and caution should be exercised when attempting to directly compare their chemical and physical properties. While these distinctions are important for the manufacturer, this document focuses on the techniques to measure the materials properties and not their absolute or relative values. Future materials such as solid-state batteries and sulfides are beyond the scope of this document.
Standard

Adhesives, Sealants, and Heat Transfer Materials in Battery Systems: A Primer on Materials, Applications, and End-Use Performance Requirements

2020-05-05
CURRENT
J3178_202005
This SAE Information Report introduces key concepts and properties of adhesives, sealants, and HTMs and the roles they serve in present-day battery systems applications. The basic chemistry and properties of the three types of materials are summarized along with important health and environmental information. Relevant material dispense methodologies and equipment for material dispensing is reviewed. A series of representative battery applications examples employing adhesives, sealants, and HTMs is also provided with particular attention given to end-use performance.
Standard

Recommended Practice for Determining Material Properties of Li-Battery Separator

2019-10-14
CURRENT
J2983_201910
This SAE RP provides a set of test methods and practices for the characterization of the properties of Li-battery separator. The test methods in this RP have been grouped into one of three categories: 1 Separator material parameters: Minimum set of separator properties to be measured. 2 Chemistry/customer-specific parameters: Properties that are dependent on the application, customer needs and/or requirements, manufacturing process, etc. This RP will include the current best practice methodologies for these tests, with an understanding that the best practice methodologies are evolving as more information is learned. 3 R&D parameters: Properties that are dependent on the application, customer needs and/or requirements, manufacturing process, etc. The methodologies in this third section are under development and have not yet achieved broad application.
Standard

Recommended Practice for Determining Material Properties of Li-Battery Separator

2012-12-03
HISTORICAL
J2983_201212
This SAE RP provides a set of test methods and practices for the characterization of the properties of Li-battery separator. The test methods in this RP have been grouped into one of three categories: 1 Manufacturing parameters: Minimum set of separator properties to be measured 2 Chemistry/Customer specific parameters: Properties that are dependent on the application, customer needs and/or requirements, manufacturing process etc. This RP will include the current best practice methodologies for these tests, with an understanding that the best practice methodologies are evolving as more information is learned. 3 R&D parameters: Properties that are dependent on the application, customer needs and/or requirements, manufacturing process etc. The methodologies in this 3rd section are under development and have not yet achieved broad application.
Standard

VOLTAGES FOR DIESEL ELECTRICAL SYSTEMS

1993-11-23
CURRENT
J539_199311
This SAE Recommended Practice is intended to apply to lamps, batteries, heaters, radios, and similar equipment for operation with mobile or automotive diesel engines. Twenty-four V systems have long been used for heavy-duty services because 24 V permit operating 12 V systems in series-parallel. Thirty-two V systems have been used for marine, railroad-car lighting, and other uses. Generators, storage batteries, starting motors, lighting, and auxiliary electrical equipment shall be for nominal system ratings of 12, 24, or 32 V as determined by the power requirements of the application. It is recommended that no intermediate voltages be considered. The combination of a 24 V starting motor and two 12 V batteries connected in series for cranking is considered practical where it can be adapted to the installation.
Standard

VOLTAGE DROP FOR STARTING MOTOR CIRCUITS

1996-10-01
HISTORICAL
J541_199610
The scope of this SAE Recommended Practice is to describe the maximum recommended voltage drop for starting motor circuits for 6 V through 32 V starters.
X