Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Innovative Solution to Assembly Conical Roller Bearings on Wheel Hubs

2010-10-06
2010-36-0471
High axial loads applied on conical roller bearings can lock the wheel hub after the fastener assembling. This assembly can be made, nowadays, using a castle nut plus a cotter pin or by plastic deformation of the nut to prevent its release. This procedure involves many components for the assembling, restrict its reuse, add extra costs, and provide possible failures during the assembling line or during the future maintenance. This work proposes to demonstrate the development of an efficient and easy system to mount wheel hubs on lines and later to assure maintenance without jeopardizing the efficiency and the functionality of the tapered roller bearing.
Technical Paper

A Prevailing Torque Nut with Incorporated Washer: A Solution for Rear and Front Axle Fastening

2012-10-02
2012-36-0288
Wheel hubs typically are set in vehicles through nuts with self-locking feature to assure safety. That feature may be done by an external component like a cotter pin, a deformable element incorporated to the nut like polyamide or metallic insert or some controlled mechanical deformation applied right on nut body. Nuts with some self-locking elements are being used in order to eliminate cotter pins from the system. However, during the maintenance of vehicles, some disadvantages appear like damage in thread axle due disassembling, considering controlled mechanical deformation nuts or the replacement of nut with polyamide insert to assure self-lock featuring. This paper presents a solution to replace a fastening in a current front and rear wheel-hub for a passenger vehicle. The study is made comparing a current solution, a controlled mechanical deformed nut - stover type - from a polyamide insert nut and an innovative prevailing torque nut with incorporated washer.
Technical Paper

Innovation on Central Wheel Nut to Racing Prototype Vehicle

2013-10-07
2013-36-0472
The main characteristics required when fastening racing cars wheel are the resistance to self-loosening plus high-speed to assembling and disassembling of the wheel. To attend these two contradictory characteristics, it is necessary to develop differentiated fastening solutions. This work presents a new concept of fastening central wheel nuts for racing cars with improved fastening efficiency regard safety and assembly speed in comparison to the current fastening. The new wheel nut was designed and validated through analytical and FEM analysis as well as real tests.
Technical Paper

Analysis of the Vibration Modes of an Automotive Propeller Shaft using FEM and Analytical Models

2012-10-02
2012-36-0224
Traditional propeller shafts using universal joints have been replaced by sophisticated and complex solutions that not only reduce weight, but also increase the performance of such systems in modern automotive vehicles. Due to its complexity that nowadays even may combine plastic and metallic components, traditional analytical models reach their limits to support engineers during their design phase. Particularly, in the case of their analysis under vibration, it becomes critical, as the life time of a propeller shaft and its components (bushes and joints) have to work far away from their natural frequency values. Analytical solutions seem not to be helpful anymore, when one need to reach a mostly precise value of a natural frequency of complex shafts. Although the FEM analysis nowadays is so far highly developed, they are still no responding to the increasingly demand for high accurate results in a short period of development time.
Technical Paper

Theoretical and Practical Studies for Designing the Effective Length of Threaded Fasteners, Considering the Applied Torque on the Joint

2010-10-06
2010-36-0472
The effective length of screwed fasteners, regarding its correlation between safety assembling and production issues, has always been an open question for designers of fastening system. This work presents a real case of dimensioning one wheel nut according to theoretical and practical tests in order to guarantee a safe assembling. The objective of this study is to validate the geometric dimensioning of metric threads and their applications under real conditions.
X