Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Impact of Auxiliary Loads on Fuel Economy and Emissions in Transit Bus Applications

2012-05-25
The first commercially available plug-in hybrid electric vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in mid-December 2010. The Volt uses a series-split powertrain architecture, which provides benefits over the series architecture that typically has been considered for use in electric-range extended vehicles (EREVs). A specialized EREV powertrain, called the Voltec, drives the Volt through its entire range of speed and acceleration with battery power alone and within the limit of battery energy, thereby displacing more fuel with electricity than a PHEV, which characteristically blends electric and engine power together during driving. This paper assesses the benefits and drawbacks of these two different plug-in hybrid electric architectures (series versus series-split) by comparing component sizes, system efficiency, and fuel consumption over urban and highway drive cycles.
Collection

Climate Control, 2014

2014-04-01
This technical paper collection contains 23 papers covering the latest advancements in climate control.
Collection

Climate Control, 2013

2013-04-09
The 16 papers in this technical paper collection covers recent advances such as energy efficient rear defog, CO2 modeling, suction pressure drop, IHX optimization, and innovative airflow control.
Collection

Fire Safety, 2014

2014-04-01
This technical paper collection focuses on current developments in the fields of vehicle fire science, statistics, risks, assessment and mitigation. Papers addressing vehicle design, live-fire tests and fire investigation issues applicable to traditional, electric and alternatively fueled vehicles are included.
Collection

Climate Control, 2015

2015-04-14
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance and quality of climate control are both critical to customer satisfaction. The system has strong design interaction with other vehicle systems, while its primary objective is to deliver thermal comfort and occupant safety with low energy consumption. Localized Comfort, Secondary Fluids, Air Quality, Controls, System Sizing and HVAC consumer interface are just a few of the recent advances.
Collection

Climate Control, 2018

2018-04-03
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance is critical to customer satisfaction. The primary objective is to deliver occupant safety and thermal comfort at minimum energy consumption, yet the system has strong design interaction with other vehicle systems. Noise, Air Quality, and Energy ace are just a few of the recent advances.
Collection

Climate Control, 2017

2017-03-28
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance is critical to customer satisfaction. The primary objective is to deliver occupant safety and thermal comfort at minimum energy consumption, yet the system has strong design interaction with other vehicle systems. Noise, Air Quality, and Energy ace are just a few of the recent advances.
Journal Article

A Study of an Integrated HVAC-Vehicle Model for Automotive Vehicles

2018-04-18
Abstract The objective of this work is to develop an integrated HVAC-VEHICLE model for climate control studies. A published lumped parameter based HVAC model has been used as the framework for the HVAC modeling with some modifications to realize the climate control and to improve the robustness of the model. R134a (1,1,2,2-Tetrafluoroethane) has been used as the refrigerant fluid in this study. The stand-alone HVAC model has been compared qualitatively with the experimental works available in the literature. The experimental trends of the thermodynamic and performance related parameters of HVAC are reasonably well captured by the HVAC model. In particular, Coefficient of Performance (CoP) was found to decrease with increase in compressor speed and increase in ambient temperature but increase with increase in evaporator blower mass flow rate.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Development of a Standard Testing Method for Vehicle Cabin Air Quality Index

2019-05-20
Abstract Vehicle cabin air quality depends on various parameters such as number of passengers, fan speed, and vehicle speed. In addition to controlling the temperature inside the vehicle, HVAC control system has evolved to improve cabin air quality as well. However, there is no standard test method to ensure reliable and repeatable comparison among different cars. The current study defined Cabin Air Quality Index (CAQI) and proposed a test method to determine CAQI. CAQIparticles showed dependence on the choice of metrics among particle number (PN), particle surface area (PS), and particle mass (PM). CAQIparticles is less than 1 while CAQICO2 is larger than 1. The proposed test method is promising but needs further improvement for smaller coefficient of variations (COVs).
Journal Article

Dynamic and Friction Loss Analysis of the Vane in the Revolving Vane Compressor with the External Driving System

2021-05-25
Abstract The most important and most easily damaged part of a revolving vane (RV) compressor is the vane. The friction loss of the vane determines the service life and maintenance cost of the RV compressor to a certain extent. To improve the efficiency and prolong the service life of the RV compressor, it is of great significance to analyze the dynamics of the vane and reduce the friction loss of the vane. In this article, a scheme is proposed to reduce the friction at the vane’s sides for the RV compressor. In the proposed scheme, the force acting on the vane tip due to the cylinder inertia is eliminated by driving the rotor and cylinder externally and separately; thus the friction loss at the vane’s sides is reduced. Calculations show that eliminating the effect of cylinder inertia can reduce the friction loss at the vane’s sides from 44.9 W to 24.7 W.
Standard

R-152a Recovery/Recycling/Recharging Equipment for Flammable Refrigerants for Mobile Air-Conditioning Systems

2019-12-10
WIP
J3222
This SAE Standard applies to equipment to be used with R-152a refrigerant only. It establishes requirements for equipment used to recharge R-152a to an industry accepted accuracy level and purity levels defined in SAE J2099. Refrigerant service equipment is required to ensure adequate refrigerant recovery to reduce emissions and provide for accurate recharging of mobile air conditioning systems. Equipment shall be certified to meet all performance requirements outlined in this document and international/regional construction and safety requirements as outlined in this document.
Standard

R-152a Refrigerant Electronic Leak Detectors, Minimum Performance Criteria

2019-12-10
WIP
J3221
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors suitable for use with R-152a, an A2 flammable refrigerant. The equipment specified here will identify smaller refrigerant leaks when servicing motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency.
Standard

Aftermarket Service Lubricants for use in MVAC Systems

2017-04-07
WIP
J3140
This SAE standard applies to compressor lubricants intended for aftermarket use in the refrigerant circuit of vehicle air-conditioning systems. This standard does not grant the user to qualify a lubricant as OEM approved. This SAE Standard is not limited by refrigerant selection, however, only refrigerants identified in SAE 639 may apply for SAE J2911 submission and container labeling.
Standard

STANDARD FOR D.C. BRUSH MOTOR - HVAC BLOWERS

2020-11-19
CURRENT
USCAR6-1
This standard sets forth the performance and durability requirements for 12-volt, D.C. brush-type electric motors used for automobile Heating, Ventilation, and Air Conditioning (HVAC) blowers and outlines Production Validation and Continuing Conformance testing.
Standard

STANDARD FOR D.C. BRUSH MOTOR – HVAC BLOWERS

1999-02-01
HISTORICAL
USCAR6
This standard sets forth the performance and durability requirements for 12-volt, D.C. brush-type electric motors used for automobile Heating, Ventilation, and Air Conditioning (HVAC) blowers and outlines Production Validation and Continuing Conformance testing.
Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
X