Refine Your Search

Topic

Search Results

Technical Paper

The Effect of Obesity on Rollover Ejection and Injury Risks

2020-04-14
2020-01-1219
Obesity rates are increasing among the general population. This study investigates the effect of obesity on ejection and injury risk in rollover crashes through analysis of field accident data contained in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database. The study involved front outboard occupants of age 15+ years in 1994+ model year vehicle rollover crashes. Occupants were sorted into two BMI groups, normal (18.5 kg/m2 ≤ BMI < 25.0 kg/m2) and obese (BMI ≥30 kg/m2). Complete and partial ejection risks were first assessed by seating location relative to roll direction and belt use. The risk of serious-to-fatal injuries (MAIS 3+F) in non-ejected occupants were then evaluated. The overall risk for complete ejection was 2.10% ± 0.43% when near-sided and 2.65% ± 0.63% when far-sided, with a similar risk for both the normal and obese BMI groups.
Journal Article

Basilar Skull Fractures by Crash Type and Injury Source

2011-04-12
2011-01-1126
Purpose: This study investigates NASS-CDS data on basilar skull fractures by crash type and injury source for various crash scenarios to understand the injury risks, injury mechanisms and contact sources. Methods: 1993-2008 NASS-CDS data was used to study basilar skull fractures in adult front occupants by crash type and injury source. Injury risks were determined using weighted data for occupants with known injury status in 1994+ model year vehicles. In-depth analysis was made of far-side occupants in side impacts and rear crashes using the NASS electronic cases. Results: Basilar skull fractures occur in 0.507 ± 0.059% of rollovers and 0.255 ± 0.025% of side impacts. The lowest risk is in rear impacts at 0.015 ± 0.007%. The most common contact source is the roof, side rails and header (39.0%) in rollovers, the B-pillar (25.8%) in side impacts and head restraint (55.3%) in rear crashes.
Technical Paper

Evaluation of Laminated Side Window Glazing Coding and Rollover Ejection Mitigation Performance Using NASS-CDS

2020-04-14
2020-01-1216
Occupant ejection has been identified as a safety problem for decades, particularly in rollover crashes. While field accident studies have repeatedly demonstrated the effectiveness of seat belts in mitigating rollover ejection and injuries, the use of laminated glass in side window positions has been suggested as a means to mitigate occupant ejection. Limited data is available on the field performance of laminated glass in preventing ejection. This study utilized 1997-2015 NASS-CDS data to investigate the reliability of the glazing coding variables in the database and determine if any conclusions can be drawn regarding the effect of different side window glazing types on occupant ejection. An initial query was run for 1997-2016 model year vehicles involved in side impacts to evaluate glazing coding within NASS-CDS.
Technical Paper

Sled Test Results Using the Hybrid III 6 Year Old: An Evaluation of Various Restraints and Crash Configurations

2004-03-08
2004-01-0316
Data suggest that in response to substantial educational efforts, more children are being placed in the rear seats of vehicles. As this transition occurs, it is important to make efforts to optimize the performance of rear seat restraints for children. Prior to developing new restraints for children for the rear seat, a better understanding of child responses in various crash scenarios is needed. The objective of this study was to evaluate the performance of various restraint systems and countermeasures for child occupants in different crash scenarios. Sled tests were carried out with a Hybrid III 6 year old anthropomorphic test device (ATD) in frontal, oblique and side impact configurations. The performance of a highback and a backless booster seat was assessed. The results were compared with two standard 3 point belt restraint systems: 1. a package shelf mounted belt, and 2. a C-pillar mounted belt.
Technical Paper

US and UK Field Rollover Characteristics

2001-03-05
2001-01-0167
In this study, US and UK accident data were analyzed to identify parameters that may influence rollover propensity to analyze driver injury rate. The US data was obtained from the weighted National Automotive Sampling System (NASS-CDS), calendar years 1992 to 1996. The UK pre-roll data was obtained from the national STATS 19 database for 1996, while the injury information was collected from the Co-operative Crash Injury Study (CCIS) database. In the US and UK databases, rollovers accounted for about 10% of all crashes with known crash directions. In the US and UK databases, most rollovers occurred when the vehicle was either going straight ahead or turning. The propensity for a rollover was more than 3 times higher when going around a bend than a non-rollover. In the UK, 74% of rollovers occurred on clear days with no high winds and 14% on rainy days with no high winds. In the US, 83% of rollovers took place in non-adverse weather conditions and 10% with rain.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Lumbar Spine Fractures in Undercarriage Impacts: Analysis of 1997-2015 NASS-CDS

2018-04-03
2018-01-0546
Objective: This is a descriptive study of the incidence of spinal injury by crash type using NASS-CDS. It provides an understanding of impacts to the undercarriage of the vehicle and injuries to the lumbar spine by reviewing electronic cases in NASS-CDS to determine crash circumstances for fractures of the lumbar spine with undercarriage impacts. Methods: 1997-2015 NASS-CDS was evaluated for serious injury (MAIS 3 + F) to front-seat occupants by seatbelt use and crash type in 1994+ MY vehicles. Undercarriage impacts were defined by GAD1 = U without a rollover. Serious injury was defined as MAIS 3 + F. Spinal injuries AIS 3+ were separated into cervical, thoracic and lumbar regions. Weighted data was determined using ratio weight. NASS-CDS electronic cases were downloaded from NHTSA with AIS 3+ lumbar spine injuries in undercarriage impacts. Results: There were 2,160 MAIS 3 + F injured occupants in undercarriage impacts. This was 0.23% of all serious injury.
Technical Paper

Abdominal Injuries in Frontal Crashes: Influence of Occupant Age and Seating Position

2018-04-03
2018-01-0535
Objective: This study investigated the incidence of abdominal injuries in frontal crashes by occupant age and seating position. It determined the risk for abdominal injury (AIS 2+) by organ and injury source. Methods: 1997-2015 NASS-CDS was analyzed to estimate the occurrence of abdominal injuries in non-ejected, belted occupants involved in frontal crashes. Vehicles were included with 1997+ model year (MY). The annual incidence and rate for different types of abdominal injury were estimated with standard errors. The sources for abdominal injury were determined. Results: 77.8% of occupants were drivers, 16.7% were right-front passengers and 5.4% were rear passengers. Rear passengers accounted for 77.1% of 8-11 year old (yo) and 17.2% of 12-17 yo group. The risk for moderate abdominal injury (MAIS 2 + abdo) was 0.30% ± 0.053% in drivers, 0.32% ± 0.086% in right-front passengers and 0.38% ± 0.063% in rear occupants.
Technical Paper

Effect of Occupant Weight and Initial Position in Low-to-High Speed Rear Sled Tests with Older and Modern Seats

2021-04-06
2021-01-0918
The average body weight of the US population has increased over time. This study investigates the effect of increasing weight on seat and occupant responses in 15-18 km/h and 42 km/h rear sled tests. The effect of initial occupant posture is also discussed. Seven tests were conducted with lap-shoulder belted ATDs (anthropometric test device) placed on older and modern driver seats. Four tests were conducted with a 50th percentile male Hybrid III, two with 95th percentile male Hybrid III and one with a BioRID. The ATDs were ballasted to represent a Class I or II obese occupant in three tests. The tests were matched by seat model and sled velocity. The effect of occupant weight was assessed in three matches. The results indicated an increase in seatback deflection with increasing occupant weight.
Technical Paper

Case Study of Vehicle Maneuvers Leading to Rollovers: Need for a Vehicle Test Simulating Off-Road Excursions, Recovery and Handling

2003-03-03
2003-01-0169
Rollovers are an important vehicle safety issue. Various technologies have been developed to help prevent rollovers from occurring, but the evaluation of rollover resistance typically involves vehicle-handling tests that are conducted on flat road surfaces with a uniform or split coefficient of friction. The purpose of this study is to determine the precipitating events leading to rollovers by analyzing real-world rollover crashes. This is a first step in identifying and developing vehicle tests that are representative of the principal driving scenarios leading to rollovers. The sequence of events leading to rollovers was determined from 63 in-depth investigated cases in the NASS-CDS database from 1995-1999. The sequence was evaluated by vehicle maneuvers, vehicle stability, surface type, road and shoulder transition condition, posted and estimated speeds, vehicle type and driver injury severity.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part I: Adults and Teenagers

2003-03-03
2003-01-0153
Since more occupants are using rear seats of vehicles, a better understanding of priorities for rear occupant protection is needed as future safety initiatives are considered. A two-part study was conducted on occupant injuries in rear seating positions. In Part I, adult and teenage occupants ≥13 years of age are investigated. In Part II, children aged 4-12 years old and toddlers and infants aged 0-3 are studied separately because of the use of infant and child seats and boosters involve different injury mechanisms and tolerances. The objectives of this study on adult and teenager, rear-seated occupants (≥13 years old) are to: 1) review accident data, 2) identify the distribution of rear occupants, and 3) analyze injury risks in various crash modes, including rollovers, frontal, side and rear impacts. Three databases were investigated: NASS-CDS, GES and FARS.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part II: Children, Toddlers and Infants

2003-03-03
2003-01-0154
Child safety continues to be an important issue in automotive safety for many reasons, including reported cases of serious injury from airbag deployments. As a result of extensive public education campaigns, most children are now placed in rear seats of vehicles. Accordingly, a more precise understanding of rear-seat occupant protection is developing as the second and third rows have become the primary seating area for children in SUVs, vans and passenger cars. The objective of this study was to review field crash and injury data from rear seats, identify the distribution of children and infants in rear seats, and analyze injury risks in various crash modes. The database used was the 1991-1999 NASS-CDS. When looking at crash configurations for 1st and 2nd row children, rollover crashes involved the highest incidence of MAIS 3+ injury, followed by frontal and side impacts. Lap-shoulder belt usage was similar for 1st and 2nd row children.
Technical Paper

Fatalities of Second-Row Children in Front, Side and Rear Impacts by Calendar Year (CY) and Model Year (MY)

2022-03-29
2022-01-0860
Field data was analyzed on second-row children in front, side and rear impacts to study fatality trends by model year (MY) and calendar year (CY) with 1980-2020 MY vehicles. The different MY and CY perspectives show changes in rates that are useful for setting priorities for second-row child safety in rear impacts. 1990 to 2019 FARS was queried to assess the number of fatally injured and non-ejected second-row children (0-15 years old) in crashes without fires. The children included outboard occupants seated behind an occupied front seat and center occupants. The data was analyzed for rear, front and side impacts to assess crash frequency. 1990-2015 POLK was queried to assess exposure of registered vehicles and estimate a fatality rate. The FARS and POLK data were sub-grouped by MY of the vehicle and CY of the crash. There were 2.8-times more fatally injured children in frontal crashes than in the rear crashes. The ratio of frontal and rear crashes varied with CY sub-groups.
Technical Paper

Seat Performance in Rear Impacts: Seatback Deflection and Energy Dissipation

2021-04-06
2021-01-0916
Occupant protection in rear crashes is complex. While seatbelts and head restraints are effective in rear impacts, seatbacks offer the primary restraint component to front-seat occupants in rear impacts. Seatback deflection due to occupant loading can occur in a previous rear crash and/or in multiple-rear event crashes. Seatback deflection will in-turn affect the plastic seatback deformation and energy absorption capabilities of the seat. This study was conducted to provide information on seatback deflection and seat energy consumption in low and high-speed rear impacts. The results can be used to examine seatback deflection and energy consumed in a previous rear impact, or in collisions with multiple rear impacts. Prior seatback deflection and energy absorption can affect the total remaining energy absorption and seat performance for a subsequent rear impact.
Technical Paper

Analysis of Rear Seat Sled Tests with the 5th Female Hybrid III: Incorrect Conclusions in Bidez et al. SAE 2005-01-1708

2019-04-02
2019-01-0618
Objective: Sled test video and data were independently analyzed to assess the validity of statements and conclusions reported in Bidez et al. SAE paper 2005-01-1708 [7]. Method: An independent review and analysis of the test data and video was conducted for 9 sled tests at 35 km/h (21.5 mph). The 5th female Hybrid III was lap-shoulder belted in the 2nd or 3rd row seat of a SUV buck. For one series, the angle was varied from 0, 15, 30, 45 and 60 deg PDOF. The second series involved shoulder belt pretensioning and other belt modifications. Results: Bidez et al. [7] claimed “The lap belts moved up and over the pelvis of the small female dummy for all impact angles tested.” We found that there was no submarining in any of the tests with the production lap-shoulder belts. Bidez et al. [7] claimed “H3-5F dummies began to roll out of their shoulder belt at… 30 degrees. Complete loss of torso support was seen at 45 degrees without significant kinetic energy dissipation.”
Journal Article

Injury by Delta V in Front, Near-Side, Far-Side and Rear Impacts: Analysis of 1994-2015 NASS-CDS

2022-03-29
2021-36-0089
The risk for severe injury (MAIS 4+F) was determined by crash type, seatbelt use and crash severity (delta V) using 22 years of NASS-CDS from 1994-2015 with all light vehicles and occupants 15+ years old. There were 9 increments of delta V from <16-72+ km/h (<10-45+ mph). Crashes were grouped by the location of damage to the front, near-side, far-side and rear. Injury risk was calculated by dividing the number of severely injured (MAIS 4+F) by the number of exposure (MAIS 0+F) occupants using weighted data. Standard errors were determined. The data and plots provide a national estimate of injury by delta V in front, near-side, far-side and rear impacts based on the multi-year field data in NASS-CDS.
Technical Paper

Effect of ATD Size, Vehicle Interior and Restraint Misuse on Second-Row Occupant Kinematics in Frontal Sled Tests

2021-04-06
2021-01-0914
Interest in rear-seat occupant safety has increased in recent years. Information relevant to rear-seat occupant interior space and kinematics are needed to evaluate injury risks in real-world accidents. This study was conducted to first assess the effect of size and restraint conditions, including belt misuse, on second-row occupant kinematics and to then document key clearance measurements for an Anthropomorphic Test Device (ATD) seated in the second row in modern vehicles from model years 2015-2020. Twenty-two tests were performed with non-instrumented ATDs; three with a 5th percentile female Hybrid III, 10 tests with a 10-year-old Hybrid III, and 9 tests with a 6-year-old Hybrid III. Test conditions included two sled bucks (mid-size car and sport utility vehicle (SUV)), two test speeds (56 and 64 km/h), and various restraint configurations (properly restrained and improperly restrained configurations). Head and knee trajectories were assessed.
Journal Article

Rear-End Impacts - Part 2: Sled Pulse Effect on Front-Seat Occupant Responses

2022-03-29
2022-01-0854
This study was conducted to assess the effects of differing rear impact pulse characteristics on restraint performance, front-seat occupant kinematics, biomechanical responses, and seat yielding. Five rear sled tests were conducted at 40.2 km/h using a modern seat. The sled buck was representative of a generic sport utility vehicle. A 50th percentile Hybrid III ATD was used. The peak accelerations, acceleration profiles and durations were varied. Three of the pulses were selected based on published information and two were modeled to assess the effects of peak acceleration occurring early and later within the pulse duration using a front and rear biased trapezoidal characteristic shape. The seatback angle at maximum rearward deformation varied from 46 to 67 degrees. It was lowest in Pulse 1 which simulates an 80 km/h car-to-car rear impact.
Technical Paper

The Effect of Crash Severity and Structural Intrusion on ATD Responses in Rear-End Crashes

2020-04-14
2020-01-1224
This study assesses vehicle and occupant responses in six vehicle-to-vehicle high-speed rear impact crash tests conducted at the Exponent Test and Engineering Center. The struck vehicle delta Vs ranged from 32 to 76 km/h and the vehicle centerline offsets varied from 5.7 to 114 cm. Five of the six tests were conducted with Hybrid III ATDs (Anthropometric Test Device) with two tests using the 50th male belted in the driver seat, one test with an unbelted 50th male in the driver seat, one test with a 95th male belted in the driver seat, and one with the 5th female lap belted in the left rear seat. All tests included vehicle instrumentation and three tests included ATD instrumentation. The ATD responses were analyzed and compared to corresponding IARVs (injury assessment reference values). Ground-based and onboard vehicle videos were synchronized with the vehicle kinematic data and biomechanical responses.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
X