Refine Your Search

Topic

Search Results

Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

2009-06-15
2009-01-1892
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
Journal Article

Characterizations of Deployment Rates in Automotive Technology

2012-04-16
2012-01-1057
Passenger cars in the United States continue to incorporate increasing levels of technology and features. However, deployment of technology requires substantial development and time in the automotive sector. Prior analyses indicate that deployment of technology in the automotive sector can be described by a logistic function. These analyses refer to maximum annual growth rates as high as 17% and with developmental times of 10-15 years. However, these technologies vary widely in complexity and function, and span decades in their implementation. This work applies regression with a logistic form to a wide variety of automotive features and technologies and, using secondary regression, identifies broader trends across categories and over time.
Technical Paper

Intake Port Phenomena in a Spark-Ignition Engine at Part Load

1991-10-01
912401
The flow and heat transfer phenomena in the intake port of a spark ignition engine with port fuel injection play a significant role in the mixture preparation process, especially at part load. The backflow of the hot burned gas from the cylinder into the intake port when the intake valve is opened breaks up any liquid film around the inlet valve, influences gas and wall temperatures, and has a major effect on the fuel vaporization process. The backflow of in-cylinder mixture with its residual component during the compression stroke prior to inlet valve closing fills part of the port with gas at higher than fresh mixture temperature. To quantify these phenomena, time-resolved measurements of the hydrocarbon concentration profile along the center-line of the intake port were made with a fast-response flame ionization detector, and of the gas temperature with a fine wire resistance thermometer, in a single-cylinder engine running with premixed propane/air mixture.
Journal Article

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 2-Effective Octane Numbers

2012-04-16
2012-01-1284
Spark Ignited Direct Injection (SI DI) of fuel extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the large in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in direct injection (DI) is therefore especially advantageous due to the high heat of vaporization of ethanol. In addition to the thermal benefit due to charge cooling, ethanol blends also display superior chemical resistance to autoignition, therefore allowing the further extension of knock limits. Unlike the charge cooling benefit which is realized mostly in SI DI engines, the chemical benefit of ethanol blends exists in Port Fuel Injected (PFI) engines as well. The aim of this study is to separate and quantify the effect of fuel chemistry and charge cooling on knock. Using a turbocharged SI engine with both PFI and DI, knock limits were measured for both injection types and five gasoline-ethanol blends.
Technical Paper

Combustion Chamber Deposit Effects on Hydrocarbon Emissions from a Spark-Ignition Engine

1997-10-01
972887
A dynamometer-mounted four-cylinder Saturn engine was used to accumulate combustion chamber deposits (CCD), using an additized fuel. During each deposit accumulation test, the HC emissions were continuously measured. The deposit thickness at the center of the piston was measured at the beginning of each day. After the 50 and 35-hour tests, HC emissions were measured with isooctane, benzene, toluene, and xylene, with the deposited engine, and again after the deposits had been cleaned from the engine. The HC emissions showed a rapid rise in the first 10 to 15 hours and stabilization after about 25 hours of deposit accumulation. The HC increase due to CCD accumulation accounted for 10 to 20% of the total engine-out HC emissions from the deposit build-up fuel and 10 to 30% from benzene, isooctane, toluene, and xylene, making CCDs a significant HC emissions source from this engine. The HC emissions stabilized long before the deposit thickness.
Technical Paper

The Importance of Injection System Characteristics on Hydrocarbon Emissions from a Direct-Injection Stratified-Charge Engine

1990-02-01
900609
The effects of injection variability, low velocity fuel injection, and injector orifice size on unburned hydrocarbon emissions were studied in a direct-injection stratified-charge (DISC) engine. The engine incorporated a combustion process similar to the Texaco Controlled Combustion System (TCCS) and was operated with gasoline. The variability in the amount of fuel injected per cycle was found to have a negligible effect on HC emissions. Changing the amount of fuel injected at low velocity at the end of injection impacted the HC emissions by up to 50%. A positive pressure differential between the injection line and the combustion chamber when the injector needle closed resulted in more fuel injected at low velocity and increased HC emissions. High speed single frame photography was used to observe the end of injection. Injectors with smaller orifices had substantially lower HC emissions than the baseline injector.
Technical Paper

Liquid Fuel Flow in the Vicinity of the Intake Valve of a Port-Injected SI Engine

1998-10-19
982471
Liquid fuel flow into the cylinder an important source of hydrocarbon (HC) emissions of an SI engine. This is an especially important HC source during engine warm up. This paper examines the phenomena that determine the inflow of liquid fuel through the intake valve during a simulated start-up procedure. A Phase Doppler Particle Analyzer (PDPA) was used to measure the size and velocity of liquid fuel droplets in the vicinity of the intake valve in a firing transparent flow-visualization engine. These characteristics were measured as a function of engine running time and crank angle position during four stroke cycle. Droplet characteristics were measured at 7 angular positions in 5 planes around the circumference of the intake valve for both open and closed-valve injection. Additionally the cone shaped geometry of the entering liquid fuel spray was visualized using a Planar Laser Induced Fluorescence (PLIF) setup on the same engine.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Engine Knock Characteristics at the Audible Level

1991-02-01
910567
The effects of combustion chamber and intake valve deposit build-up on the knocking characteristics of a spark ignition engine were studied. A Chrysler 2.2 liter engine was run continuously for 180 hours to build up intake valve and combustion chamber deposits. In the tests reported here, the gasoline used contained a deposit controlling fuel additive. The engines's octane requirement increased by 10 research octane numbers during this extended engine operating period. At approximately 24 hour intervals during these tests, the engine was audibly knock rated to determine its octane requirement. Cylinder pressure data was collected during knocking conditions to investigate the knocking characteristics of each cylinder, and deposit build-up effects on those statistics. Cylinder-to-cylinder variations in knock statistics were studied. Analysis of the data indicated that some 20 to 40 percent of cycles knock before the knock is audibly detected.
Technical Paper

Effects of Charge Motion Control During Cold Start of SI Engines

2006-10-16
2006-01-3399
An experimental study was performed to investigate the effects of various intake charge motion control valves (CMCVs) on mixture preparation, combustion, and hydrocarbon (HC) emissions during the cold start-up process of a port fuel injected spark ignition (SI) engine. Different charge motions were produced by three differently shaped plates in the CMCV device, each of which blocked off 75% of the engine's intake ports. Time-resolved HC, CO and CO2 concentrations were measured at the exhaust port exit in order to achieve cycle-by-cycle engine-out HC mass and in-cylinder air/fuel ratio. Combustion characteristics were examined through a thermodynamic burn rate analysis. Cold-fluid steady state experiments were carried out with the CMCV open and closed. Enhanced charge motion with the CMCV closed was found to shorten the combustion duration, which caused the location of 50% mass fraction burned (MFB) to occur up to 5° CA earlier for the same spark timing.
Technical Paper

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 1-Quantifying Charge Cooling

2012-04-16
2012-01-1275
Gasoline/ethanol fuel blends have significant synergies with Spark Ignited Direct Injected (SI DI) engines. The higher latent heat of vaporization of ethanol increases charge cooling due to fuel evaporation and thus improves knock onset limits and efficiency. Realizing these benefits, however, can be challenging due to the finite time available for fuel evaporation and mixing. A methodology was developed to quantify how much in-cylinder charge cooling takes place in an engine for different gasoline/ethanol blends. Using a turbocharged SI engine with both Port Fuel Injection (PFI) and Direct Injection (DI), knock onset limits were measured for different intake air temperatures for both types of injection and five gasoline/ethanol blends. The superior charge cooling in DI compared to PFI for the same fuel resulted in pushing knock onset limits to higher in-cylinder maximum pressures. Knock onset is used as a diagnostic of charge cooling.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Effect of In-Cylinder Liquid Fuel Films on Engine-Out Unburned Hydrocarbon Emissions for an SI Engine

2012-09-10
2012-01-1712
An experimental study was performed in a firing SI engine at conditions representative of the warmup phase of operation in which liquid gasoline films were established at various locations in the combustion chamber and the resulting impact on hydrocarbon emissions was assessed. Unique about this study was that it combined, in a firing engine environment, direct visual observation of the liquid fuel films, measurements of the temperatures these films were subjected to, and the determination from gas analyzers of burned and unburned fuel quantities exiting the combustion chamber - all with cycle-level resolution or better. A means of deducing the exhaust hydrocarbon emissions that were due to the liquid fuel films in the combustion chamber was developed. An increase in exhaust hydrocarbon emissions was always observed with liquid fuel films present in the combustion chamber.
Technical Paper

An Investigation of Gasoline Engine Knock Limited Performance and the Effects of Hydrogen Enhancement

2006-04-03
2006-01-0228
A set of experiments was performed to investigate the effects of relative air-fuel ratio, inlet boost pressure, and compression ratio on engine knock behavior. Selected operating conditions were also examined with simulated hydrogen rich fuel reformate added to the gasoline-air intake mixture. For each operating condition knock limited spark advance was found for a range of octane numbers (ON) for two fuel types: primary reference fuels (PRFs), and toluene reference fuels (TRFs). A smaller set of experiments was also performed with unleaded test gasolines. A combustion phasing parameter based on the timing of 50% mass fraction burned, termed “combustion retard”, was used as it correlates well to engine performance. The combustion retard required to just avoid knock increases with relative air-fuel ratio for PRFs and decreases with air-fuel ratio for TRFs.
Technical Paper

Predicting the Behavior of a Hydrogen-Enhanced Lean-Burn SI Engine Concept

2006-04-03
2006-01-1106
This paper explores the modeling of a lean boosted engine concept. Modeling provides a useful tool for investigating different parameters and comparing resultant emissions and fuel economy performance. An existing architectural concept has been tailored to a boosted hydrogen-enhanced lean-burn SI engine. The simulation consists of a set of Matlab models, part physical and part empirical, which has been developed to simulate a working engine. The model was calibrated with production engine data and experimental data taken at MIT. Combustion and emissions data come from a single cylinder research engine and include changes in air/fuel ratio, load and speed, and different fractions of the gasoline fuel reformed to H2 and CO. The outputs of the model are brake specific NOx emissions and brake specific fuel consumption maps along with cumulative NOx emissions and fuel economy for urban and highway drive cycles.
Technical Paper

Predicting the Effects of Air and Coolant Temperature, Deposits, Spark Timing and Speed on Knock in Spark Ignition Engines

1992-10-01
922324
The prediction of knock onset in spark-ignition engines requires a chemical model for the autoignition of the hydrocarbon fuel-air mixture, and a description of the unburned end-gas thermal state. Previous studies have shown that a reduced chemistry model developed by Keck et al. adequately predicts the initiation of autoignition. However, the combined effects of heat transfer and compression on the state of the end gas have not been thoroughly investigated. The importance of end-gas heat transfer was studied with the objective of improving the ability of our knock model to predict knock onset over a wide range of engine conditions. This was achieved through changing the thermal environment of the end gas by either varying the inlet air temperature or the coolant temperature. Results show that there is significant heating of the in-cylinder charge during intake and a substantial part of the compression process.
Technical Paper

A Model for Converting SI Engine Flame Arrival Signals into Flame Contours

1995-02-01
950109
A model which converts flame arrival times at a head gasket ionization probe, used in a spark-ignition engine, into flame contours has been developed. The head gasket was manufactured at MIT using printed circuit board techniques. It has eight electrodes symmetrically spaced around the circumference (top of cylinder liner) and it replaces the conventional head gasket. The model is based on engine flame propagation rate data taken from the literature. Data from optical studies of S.I. engine combustion or studies utilizing optical fiber or ionization probe diagnostics were analyzed in terms of the apparent flame speed and the entrainment speed (flame speed relative to the fluid ahead of the flame). This gives a scaling relationship between the flame speed and the mass fraction burned which is generic and independent of the chamber shape.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

The Contribution of Different Oil Consumption Sources to Total Oil Consumption in a Spark Ignition Engine

2004-10-25
2004-01-2909
As a part of the effort to comply with increasingly stringent emission standards, engine manufacturers strive to minimize engine oil consumption. This requires the advancement of the understanding of the characteristics, sources, and driving mechanisms of oil consumption. This paper presents a combined theoretical and experimental approach to separate and quantify different oil consumption sources in a production spark ignition engine at different speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on engine operating speed and load. Liquid oil distribution on the piston was studied using a Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder parameters for oil transport and oil consumption, such as liner temperatures and land pressures, were measured.
Technical Paper

Mixture Preparation Mechanisms in a Port Fuel Injected Engine

2005-05-11
2005-01-2080
An experimental study was carried out that qualitatively examined the mixture preparation process in port fuel injected engines. The primary variables in this study were intake valve lift, intake valve timing, injector spray quality, and injection timing. A special visualization engine was used to obtain high-speed videos of the fuel-air mixture flowing through the intake valve, as well as the wetting of the intake valve and head in the combustion chamber. Additionally, videos were taken from within the intake port using a borescope to examine liquid fuel distribution in the port. Finally, a simulation study was carried out in order to understand how the various combinations of intake valve lifts and timings affect the flow velocity through the intake valve gap to aid in the interpretation of the videos.
X