Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Acoustic Model Reduction for the Design of Acoustic Treatments

2021-08-31
2021-01-1057
Due to constant evolution in both noise regulations and noise comfort standards, noise reduction inside the vehicle remains one of the main issues faced today by the automotive industry. One of the most efficient methods for noise reduction is the introduction of acoustic treatments, made of multilayered trimmed panels. Constraints on these components, such as weight, packaging space and overall sound quality as well as the amount of possible material and geometrical combinations, have led automotive OEMs to use innovative methods, such as numerical acoustic simulation, so as to evaluate noise transmission in a fast and cost-effective way. While the computational cost for performing such analyses is insignificant for a limited number of configurations, the evaluation of multiple design parameter combinations early in the design stage can lead to non-viable computation times in an industrial context.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

2020-09-30
2020-01-1549
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid-frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.
Technical Paper

Vibro-Acoustic Simulation of Intake Air Filter Using a Hybrid Modal Physical Coupling

2012-06-13
2012-01-1549
To assess the acoustic performance of modern automotive air filters, both the air-borne engine noise propagating through the interior air of the system (known as “pipe noise”) and the structure-borne noise radiated by the shell (“shell noise”) should be evaluated. In this paper, these different propagation paths are modeled using the finite element solver Actran on industrial test cases set-up by SOGEFI Air and Cooling Systems. The test-case is designed in such a way that the different propagation paths are assessed separately. First the engine acoustic pulsation that is transmitted through the filter's structure is considered. Second, the noise radiated by the shell excited by mechanical forces at the support location of the filter is evaluated. Finally, the acoustic transmission loss of the filter is predicted. The ingredients of the finite/infinite element models are reviewed in details in the paper.
Technical Paper

Vibro-Acoustic Simulation of Side Windows and Windshield Excited by Realistic CFD Turbulent Flows Including Car Cavity

2012-06-13
2012-01-1521
Nowadays, the interior vehicle noise due to the exterior aerodynamic field is an emerging topic in the acoustic design of a car. In particular, the turbulent aerodynamic pressure generated by the air flow encountering the windshield and the side windows represents an important interior noise source. As a consequence PSA Peugeot Citroën is interested in the numerical prediction of this aerodynamic noise generated by the car windows with the final objective of improving the products design and reducing this noise. In the past, several joint studies have been led by PSA and Free Field Technologies on this topic. In those studies an efficient methodology to predict the noise transmission through the side window has been set up. It relies on a two steps approach: the first step involves the computation of the exterior turbulent field using an unsteady CFD solver (in this case EXA PowerFlow).
Technical Paper

Machine-Learning-Based Modelling of Electric Powertrain Noise Control Treatments

2023-05-08
2023-01-1132
Encapsulation of electric powertrains is a booming topic with the electrification of vehicles. It is an efficient way of reducing noise radiated by the machines even in later stages of the design and without altering the electromagnetic performance. However, it is still difficult to define the best possible treatment. The locations, thicknesses and material compositions need to be optimized within given constraints to reach maximum noise reduction while keeping added mass and cost at minimum. In this paper, a methodology to design the encapsulation based on numerical vibro-acoustic simulations is presented. In a first step, the covered areas are identified through post-processing of a finite element acoustic radiation model of the bare powertrain. In a second step, a design of experiment is performed to assess the influence of various cover parameters on the acoustic radiation results.
Technical Paper

Optimization of Trim Component and Reduction of the Road Noise Transmission Based on Finite Element Methods

2018-06-13
2018-01-1547
The acoustic trim components play an essential role in NVH behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car. Over the past years, the interest for numerical solutions to predict the noise transmission through trim packages has grown, leading to the development of dedicated CAE tools. The incrementally restrictive weight and space constraints force today CAE engineers to seek for optimized trim package solution. This paper presents a two-steps process which aims to reduce the structure borne road noise due to floor panel using a coupled simulation with MSC NASTRAN and Actran. The embossment of the supporting steel structure, the material properties of porous layers and the thickness of visco-elastic patches are the design variables of the optimization process.
Technical Paper

Extensive Correlation Study of Acoustic Trim Packages in Trimmed Body Modeling of an Automotive Vehicle

2019-06-05
2019-01-1511
In the automotive sector, the structure borne noise generated by the engine and road-tire interactions is a major source of noise inside the passenger cavity. In order to increase the global acoustic comfort, predictive simulation models must be available in the design phase. The acoustic trims have a major impact on the noise level inside the car cavity. Although several publications for this kind of simulations can be found, an extensive correlation study with measurement is needed, in order to validate the modeling approaches. In this article, a detailed correlation study for a complete car is performed. The acoustic trim package of the measured car includes all acoustic trims, such as carpet, headliner, seats and firewall covers. The simulation methodology relies on the influence of the acoustic trim package on the car structure and acoustic cavities. The challenge lies in the definition of an efficient and accurate framework for acoustic trimmed bodies.
Technical Paper

Numerical Simulation of Noise Transmission from A-pillar Induced Turbulence into a Simplified Car Cabin

2015-06-15
2015-01-2322
At high cruising speed, the car A-pillars generate turbulent air flow around the vehicle. The resulting aerodynamic pressure applied on the windows significantly contributes to the total cabin noise. In order to predict this particular noise contribution, the physic of both the flow and the cabin needs to be accurately modeled. This paper presents an efficient methodology to predict the turbulent noise transmission through the car windows. The method relies on a two-step approach: the first step is the computation of the exterior aero-dynamic field using an unsteady CFD solver (PowerFLOW); the second step consists in the computation of the acoustic propagation inside the cabin using a finite element vibro-acoustic solver (ACTRAN). The simplified car cabin of Hyundai Motor Company, studied in this paper, involves aluminum skin, windows, sealant, inner air cavity and acoustic treatment inside the passenger compartment (porous material, damping layer).
Technical Paper

Definition and Application of a Target Cascading Process on a Fully Trimmed Body, from Vehicle Objectives to Component Objectives

2024-06-12
2024-01-2916
Finite element (FE) based simulations for fully trimmed bodies are a key tool in the automotive industry to predict and understand the Noise, Vibration and Harshness (NVH) behavior of a complete car. While structural and acoustic transfer functions are nowadays straight-forward to obtain from such models, the comprehensive understanding of the intrinsic behavior of the complete car is more complex to achieve, in particular when it comes to the contribution of each sub-part to the global response. This paper proposes a complete target cascading process, which first assesses which sub-part of the car is the most contributing to the interior noise, then decomposes the total structure-borne acoustic transfer function into several intermediate transfer functions, allowing to better understand the effect of local design changes.
X