Refine Your Search

Topic

Search Results

Journal Article

Actuator Fault Detection and Diagnosis of 4WID/4WIS Electric Vehicles

2013-10-14
2013-01-2544
A fault detection and diagnosis (FDD) algorithm of 4WID/4WIS Electric Vehicles has been proposed in this study aiming to find the actuator faults. The 4WID/4WIS EV is one of the promising architectures for electric vehicle designs which is driven independently by four in-wheel motors and steered independently by four steering motors. The 4WID/4WIS EVs have many potential abilities in advanced vehicle control technologies, but diagnosis and accommodation of the actuator faults becomes a significant issue. The proposed FDD approach is an important part of the active fault tolerant control (AFTC) algorithm. The main objective of the FDD approach is to monitor vehicle states, find the faulty driving motor and then feedback fault information to the controller which would adopt appropriate control laws to accommodate the post-fault vehicle control system.
Journal Article

Combined Longitudinal and Lateral Control for Automated Lane Guidance of Full Drive-by-Wire Vehicles

2015-04-14
2015-01-0321
This paper presents a simultaneous longitudinal and lateral motion control strategy for a full drive-by-wire autonomous vehicle. A nonlinear model predictive control (NMPC) problem is formulated in which the nonlinear prediction model utilizes a spatial transformation to derive the dynamics of the vehicle about the reference trajectory, which facilitates the acquisition of the tracking errors at varying speeds. A reference speed profile generator is adopted by taking account of the road geometry information, such that the lateral stability is guaranteed and the lane guidance performance is improved. Finally, the nonlinear multi-variable optimization problem is simplified by considering only three motion control efforts, which are strictly confined within a convex set and are readily distributed to the four tires of a full drive-by-wire vehicle.
Technical Paper

Yaw/Roll Stability Modeling and Control of HeavyTractor-SemiTrailer

2007-08-05
2007-01-3574
This paper sets up a simplified dynamic model for simulating the yaw/roll stability of heavy tractor-semitrailer using Matlab/Simulink. A linear quadratic regulator (LQR) based on partial-state feedback controller is used to optimize the roll stability of the vehicle. The control objective for optimizing roll stability is to be reducing the lateral load transfer rate while keeping the suspension angle less than the maximum allowable angle. The simulation result shows that the LQR controller is effective in the active roll stability control of the heavy tractor-semitrailer.
Technical Paper

Research on Electric Vehicle Braking Force Distribution for Maximizing Energy Regeneration

2016-04-05
2016-01-1676
The driving range of the electric vehicle (EV) greatly restricts the development of EVs. The vehicles waste plenty of energy on account of automobiles frequently braking under the city cycle. The regenerative braking system can convert the braking kinetic energy into the electrical energy and then returns to the battery, so the energy regeneration could prolong theregenerative braking system. According to the characteristics of robustness in regenerative braking, both regenerative braking and friction braking based on fuzzy logic are assigned after the front-rear axle’s braking force is distributed to meet the requirement of braking security and high-efficient braking energy regeneration. Among the model, the vehicle model and the mechanical braking system is built by the CRUISE software. The paper applies the MATLAB/SIMULINK to establish a regenerative braking model, and then selects the UEDC city cycle for model co-simulation analysis.
Technical Paper

Design, Development and Application of Test Bench for Electrically Controlled Steering Systems

2018-04-03
2018-01-0702
This essay aims to develop an electrically controlled steering test bench and lay a solid foundation for the development of steering system. The first part mainly introduces the function, structure and working principle of the test bench. For the hardware system, it includes the steering system, fixture, sensors as well as a frameless disk motor for carrying out automatic motor input, and a dual linear motor system selected as the road resistance simulation actuator. As for the software, MATLAB/Simulink, CarSim, RTI and ControlDesk are used. Therefore, with the help of real-time simulation platform, researchers can not only build control strategy and dynamic model but also control the experiment and tune parameters in real-time. The second part of the essay aims to identify both electric and mechanical parameters of R-EPS system by carrying out tests on the proposed test bench. As parameters are successfully identified, the feasibility of the test bench is also verified.
Technical Paper

Linear Vehicle Model Identification Under Different Speed Based on ARMA Model

2012-04-16
2012-01-0249
Vehicle model plays an important role during the development process of a new car chassis. There are 2 different ways to set up the vehicle mathematics model, one is set up based on understanding the system mechanism and the other is based on system identification technique. In this paper, the transfer functions of the vehicle at 100 km/h, including yaw rate to the steering angle and lateral acceleration to the steering angle, were identified. And then the transfer functions under other forward speed were derived through studying two degrees of freedom vehicle model equation. At last the identified model at different speed was used to analysis the stability of closed loop system from the classical control theory viewpoint.
Technical Paper

Study on Automated Mechanical Transmission and Method of Parameter Optimization Design for Hybrid Electric Bus

2013-11-27
2013-01-2828
The hybrid electric city bus, which consists of the electric motor and battery, is obviously different from the traditional buses. This paper focuses on optimizing the characteristics of the automatic mechanical transmission in hybrid electric city bus and does the following studies: firstly, in order to reduce the fuel consumption, the transmission ratio and some structural parameters are optimized with CRUISE software; secondly, the volume and weight of the transmission structure is reduced and optimized by numerical optimization approach, with the limitation of the structural reliability.
Technical Paper

04Road Feel Feedback Design for Vehicle Steer-by-Wire via Electric Power Steering

2013-11-27
2013-01-2898
A new road feel feedback control design of steer-by-wire (SBW) is proposed, which is produce the steering feel of conventional vehicle with equipped electronic power steering (EPS) system, due to SBW system removes mechanical linkages between steering system and front wheels. A dynamic model is established to study the road feel generation and deal with the need of computed rack force of steer system. Based on the analysis of the assisting characteristic and the active damping control strategy of the EPS system, an integrated road feel algorithm is proposed. For rack force is difficult to measure, an estimator is presented to estimate rack force by Kalman filter (KF). The hardware-in-the-loop simulation (HILS) test bench results show that the proposed road feel control design make drivers get road feel information and SBW system can improve the vehicle maneuverability and comfortably.
Technical Paper

Passive Fault-Tolerant Performance of 4WID/4WIS Electric Vehicles Based on MPC and Control Allocation

2013-09-08
2013-24-0145
The passive fault-tolerant performance of the integrated vehicle controller (IVC) applied on 4WID/4WIS Electric Vehicles has been investigated in this study. The 4WID/4WIS EV is driven independently by four in-wheel motors and steered independently by four steering motors. Thanks to increased control flexibility of the over-actuated architecture, Control Allocation (CA) can be applied to control the 4WID/4WIS EVs so as to improve the handling and stability. Another benefit of the over-actuated architecture is that the 4WID/4WIS Electric Vehicle has sufficient redundant actuators to fight against the safety critical situation when one or more actuators fail.
Technical Paper

A Control Algorithm for Electric Power Steering of Tire Blowout Vehicle to Reduce the Impact Torque on Steering Wheel

2013-04-08
2013-01-1239
Impact torque will be generated on the steering wheel when one tire suddenly blows out on high way, which may cause driver's psychological stress and result in driver's certain misoperations on the car. In this paper, the model of tire blowout vehicle was established; the tire blowout was detected based on the change rate of tire pressure, meanwhile, the rack force caused by tire blowout was estimated through a reduce observer; finally the compensation current was figured out to reduce the impact torque on the steering wheel. Results of simulation tests showed that the control strategy proposed in this paper can effectively reduce the impact torque on the steering wheel and reduce the driver's discomfort caused by tire blowout.
Technical Paper

The Design of Electrically Controlled Steering System Hardware-In-the-Loop Test Bench

2014-04-01
2014-01-0243
Nowadays, conventional steering system cannot meet consumers' requirements as their environmental awareness increasing. Electrically controlled steering system can solve this problem well [1] [2]. Electrically controlled steering system has been not only applied widely in automobile steering technique but also becomes an important section of automobile integrated chassis control technology. It is necessary for vehicles to test their every component repeatedly before every component assembled. So a test bench becomes an essential part for vehicle products' design and improvement. The electrically controlled steering system consists of Electric Power Steering system (EPS), Active Front Steering (AFS) and Steer by Wire (SBW). The similarity among them is containing pinion-and-rack mechanical structure, so it is viable to design a test bench suitable for these three systems. This paper takes EPS as a prototype to verify the design's availability.
Technical Paper

Fault Tolerant Control Against Actuator Failures of 4WID/4WIS Electric Vehicles

2013-04-08
2013-01-0405
A fault tolerant control (FTC) approach based on reconfigurable control allocation for four-wheel independently driven and steered (4WID/4WIS) electric vehicles against driving motor failures is proposed in order to improve vehicle safety, performance and maneuverability after the driving motor failures. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle driving condition, detects and diagnoses actuator failures; 2) a motion controller that computes the generalized forces/moments to track the desired vehicle motion using model predictive control method; 3) a reconfigurable control allocator that optimally distributes the generalized forces/moments to four wheels aiming at minimizing the total tire usage. The FTC approach is based on the reconfigurable control allocation which reallocates the generalized forces/moments among healthy actuators once the actuator failures is detected.
Technical Paper

Study on Braking Force Distribution Algorithm for Hybrid Electric Bus Based on EBS

2013-04-08
2013-01-0411
In order to improve the braking energy recovery, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established by co-simulation platform for the TruckSim and Matlab/Simulink in this paper. EBS makes the front and rear shaft braking force arbitrarily distributed, which is more effective to improve the rate of energy recovery and the braking stability. A braking force distribution algorithm for hybrid electric bus based on EBS was designed in this paper. Under the premise to meet the driver's needs and the ECE regulations, this braking force distribution method focuses on making the braking force distribute to the drive shaft to a maximum extent, so as to obtain the maximum energy recovery rate by the utilization of the motor regenerative braking. At last, the simulation in different operating conditions was used to analyze the braking energy utilization and the braking performance based on the simulation model.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

2013-04-08
2013-01-0413
Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
Technical Paper

Mass Estimation and Axle Load Distribution Algorithm for EBS of Large Bus

2013-04-08
2013-01-0417
The paper describes an algorithm, which estimates the mass of large buses and axle load distribution using pedal position, wheel speed and the wheel cylinder pressure sensors. This algorithm is allowed to achieve the purpose without additional sensors by using the rotational speed sensors from ABS system and air pressure sensors in brake cylinders form ESP system. The axle load distribution algorithm mainly consists of three steps. Firstly, deceleration of the bus is estimated and then the mass of the bus is estimated. After that, the position of the mass centre is estimated. Taking account of the tire nonlinear characteristics under longitudinal forces and vertical forces, mass estimation, deceleration and the position of the mass centre of buses is corrected by the coefficient, which is determined by the wheel cylinder pressure, the wheel speed and mass estimation.
Technical Paper

Research on Control Strategy of Hierarchical Architecture Based on Drive-by-Wire Chassis

2023-04-11
2023-01-0819
The rapid development of city traffic makes the driving conditions faced by vehicles increasingly complex. The drive-by-wire chassis vehicle has the characteristics of four-wheel independent steering, four-wheel independent drive and four-wheel independent braking, which has become a current research hotspot because that can meet various complex working conditions. However, it is precisely because of the high degree of controllability of the drive-by-wire chassis that the research on the control strategy has become difficult. In this paper, an integrated control strategy based on the hierarchical algorithm framework is designed for the drive-by-wire chassis vehicle, which includes a centralized control layer, a tire force distribution layer and an actuator control layer.
Technical Paper

A Driver Direction Control Model and its Application in the Simulation of Driver-Vehicle-Road Closed-Loop System

2000-06-06
2000-01-2184
The research of driver behavior characteristics has been a focus of vehicle handling and stability performance. With the driver preview effort, many different driver preview models of direction control have been proposed and the simulations of driver-vehicle-road closed-loop system made. But in the simulation, most of the conventional models have the same precondition that the road was simply described as a pre-given preview course. How to simulate the driver dynamically deciding vehicle preview course based on the real road circumstance is the key to the further research of the driver model. In this paper, a new driver direction control model is established, which is called the Optimal Preview Lateral Acceleration (OPLA) Model and divided into three sub-models: driver’s information identification model, driver’s fuzzy decision model of vehicle preview course and driver’s performance first-order correction model.
Technical Paper

Braking Force Distribution and Coordinated Control Algorithm for Hybrid Electric Bus based on EBS

2014-04-01
2014-01-1908
In order to improve the braking energy recovery and ensure the braking comfort, a new type of regenerative braking coordinated control algorithm is designed in this paper. The hierarchical control theory is used to the regenerative braking control algorithm. First, the front axle braking force and rear axle braking force are distributed. Then the rear axle motor braking force and mechanical braking force are distributed. Finally, the dynamic coordinated control strategy is designed to control pneumatic braking system and motor braking system. Aimed at keeping the fluctuation of the total braking force of friction and the regenerative braking force small during braking modes switch, a coordinated controller was designed to control the pneumatic braking system to compensate the error of the motor braking force. Based on Matlab/Simulink platform, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established.
Technical Paper

Fault-Tolerant Control for 4WID/4WIS Electric Vehicles

2014-10-13
2014-01-2589
The passive fault-tolerant approach for four-wheel independently driven and steered (4WID/4WIS) electric vehicles has been investigated in this study. An adaptive control based passive fault-tolerant controller is designed to improve vehicle safety, performance and maneuverability when an actuator fault happens. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle driving condition, detects and diagnoses actuator failures with the inequality constraints; 2) a motion controller that computes the generalized forces/moments to track the desired vehicle motion using Model Predictive Control (MPC); 3) a reconfigurable control allocator that redistributes the generalized forces/moments to four wheels with equality constrained optimization.
Technical Paper

Combined State Estimation and Active Fault Detection of Individual-Wheel-Drive Vehicles: An Adaptive Observer-Based Approach

2015-04-14
2015-01-1107
This paper presents an adaptive observer-based approach for the combined state estimation and active fault detection and isolation (FDI) of the individual-wheel-drive (IWD) vehicles. A 3-DOF vehicle model coupled with the Highway Safety Research Institute (HSRI) tire model is established and used as the observation model. Based on this model, the dual unscented Kalman filter (DUKF) technique is employed for the observer design to give fusion results of the interdependent state and parameter variables, which undergo nonlinear transformations, with the minimum square errors. Effectiveness of the proposed algorithm is examined and validated through co-simulation between MATLAB/Simulink and CarSim. The results demonstrate that the DUKF-based observer effectively filters the sensor signals, accurately obtains the longitudinal and lateral velocities, explicitly isolates the faulty wheel(s) and accurately estimates the actual torque(s) even with the presence of noise.
X