Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Air Bag Induced Injury Mechanisms for Infants in Rear Facing Child Restraints

1997-11-12
973296
The National Highway Traffic Safety Administration (NHTSA) Special Crash Investigations database contains twelve completed cases of child fatalities in rearward facing child seats caused by deploying air bags. Three of these are now available for examination. An additional two cases were investigated by the William Lehman Injury Research Center at the University of Miami School of Medicine. These five cases are examined to evaluate crash environment, injury mechanisms, and circumstances which caused the child to be in front of the passenger side air bag Four of the cases were crashes with impacts with the side of other cars with crash severities less than 15 mph. The predominate injury mechanism was brain and skull injury from a blow transmitted to the rear of the head through the child seat back. In one case, the force to the head was transmitted downward, directly from air bag contact.
Technical Paper

Using CIREN Data to Assess the Performance of the Second Generation of Air Bags

2004-03-08
2004-01-0842
The U.S. Department of Transportation-sponsored Crash Injury Research and Engineering Network (CIREN) program offers a reasonable look at the efficacy of second-generation air bags. This paper examines the data from the William Lehman Injury Research Center (WLIRC). The WLIRC data is a near census of crashes in the Miami-Dade region with occupants that appear to be severely injured. The percentage of deaths among trauma patients in the WLIRC data as a function of delta-V for first-generation air bags was higher than expected at lower delta-V's. There were nine driver fatalities at delta-V's of less than 20 mph (four involving short stature occupants, four with elderly occupants, and one due to significant intrusion and/or vehicle incompatibility). The data supported NHTSA's conclusion that first-generation air bags were too aggressive for occupants in close proximity to the deploying air bag and too aggressive for older persons.
Technical Paper

Foot and Ankle Injuries to Drivers in Between-Rail Crashes

2013-04-08
2013-01-1243
The research question investigated in this study is what are the key attributes of foot and ankle injury in the between-rail frontal crash? For the foot and ankle, what was the type of interior surface contacted and the type of resulting trauma? The method was to study with in-depth case reviews of NASS-CDS cases where a driver suffered an AIS=2 foot or ankle injury in between-rail crashes. Cases were limited to belted occupants in vehicles equipped with air bags. The reviews concentrated on coded and non-coded data, identifying especially those factors contributing to the injuries of the driver's foot/ankle. This study examines real-world crash data between the years 1997-2009 with a focus on frontal crashes involving 1997 and later model year vehicles. The raw data count for between-rail crashes was 732, corresponding to 227,305 weighted, tow-away crashes.
Technical Paper

Effect of Occupant Position and Air Bag Inflation Parameters on Driver Injury Measures

1998-02-23
980637
This paper investigates the effects of driver airbag inflation characteristics, airbag relative position, airbag to dummy relative velocity, and steering column characteristics using a finite element model of a vehicle, air bag, and Hybrid III 50% male dummy. Simulation is conducted in a static test environment using a validated finite element model. Several static simulation tests are performed where the air bag module's position is mounted in a rigid steering wheel and the vertical and horizontal distances are varied relative to the dummy. Three vertical alignments are used: one position corresponds to the head centered on module, another position corresponds to the neck centered on module, and the third position centers the chest on the module. Horizontal alignments vary from 0 mm to 50 mm to 100 mm. All of these tests are simulated using a typical pre-1998 type inflation curve (mass flow rate of gas entering the bag).
Technical Paper

BENEFITS OF THE INFLATABLE TUBULAR STRUCTURE AN INVESTIGATION ON THE CASUALTY ABATEMENT CAPABILITY OF THE BMW HEAD PROTECTION SYSTEM HPS

1998-05-31
986169
Beginning in model year 1997, BMW introduced an innovative head protection system HPS called the Inflatable Tubular Structure (HPS). Tests indicate that the system dramatically reduces the severity of head impacts in side crashes. This investigation is an evaluation of casualty abatement benefits that are derived from applying injury measures based on the HPS test results to the population in US National Accident Sampling System (NASS/CDS). The results of component and vehicle crash tests are summarized. The procedures for estimating benefits are described along with the benefits in terms of injuries mitigated, maximum injuries to occupants mitigated, and fatalities prevented.
Technical Paper

Heart Injuries Among Restrained Occupants in Frontal Crashes

1997-02-24
970392
The William Lehman Injury Research Center has conducted multi-disciplinary investigations of one hundred seventy-eight crashes involving adult occupants protected by safety belts and air bags. In all cases, serious injuries were suspected. Nine cases involved serious heart injuries. These cases are not representative of crashes in general. However, when used in conjunction with National Accident Sampling System; Crashworthiness Data System (NASS/CDS) they provide insight into the most severe injuries suffered by restrained occupants in frontal crashes. Heart injuries are rare, but when they occur they are usually life threatening. NASS/CDS shows that heart injuries comprise about 0.2% of the injuries in frontal tow-away crashes. In the NHTSA file of Special Crash Investigations (SCI) of air bag cases, heart injuries are reported in 1% of the occupants over 15 years of age. Twenty-five percent of the fatally injured occupants had heart injuries, and 83% of those with heart injury died.
Technical Paper

Chest Injury Risks to Drivers for Alternative Air Bag Inflation Rates

1997-02-24
970129
While the present air bag systems have been shown to be highly effective in high severity crashes, undesirable side effects have been reported in some low severity events. The inflation rate of the airbag during deployment has been cited as a factor which induces injuries. A rapid airbag deployment rate is advantageous to provide protection to occupants in severe crashes. On the other hand, airbag aggressivity associated with the high inflation rate can increase injuries in the lower severity crashes. The injury producing forces from the airbag increase as the occupant position becomes closer to the bag at the time of deployment. This paper describes the results of an analytical study to evaluate chest injury measures for reduced inflation rates of a Taurus type air bag in a variety of crash modes. A detailed nonlinear finite element model of an unfolding airbag and a 50th percentile male Hybrid III dummy are used in conjunction with a test buck to simulate frontal crashes.
Technical Paper

Development and validation of the urgency algorithm to predict compelling injuries

2001-06-04
2001-06-0051
The URGENCY algorithm uses data from on-board crash recorders to assist in identifying crashes that are most likely to have time critical (compelling) injuries. The injury risks projected by using the NASS/CDS data are the basis for the URGENCY algorithm. This study applied the algorithm retrospectively to a population of injured occupants in the database from the University of Miami School of Medicine, William Lehman Injury Research Center (WLIRC). The population selected was adult occupants in frontal crashes that were protected by three-point belts plus an air bag. For the cases with greater than 50% predicted MAIS 3+ injury probability, 96% of the occupants in the study had MAIS 3+ injuries. For the cases with less than 10% predicted MAIS 3+ injury probability, 63% did not have MAIS 3+ injuries. Most of the of MAIS 3+ injuries not predicted involved injuries in multiple impact crashes, pole crashes or close-in occupants injured by air bag deployment.
Technical Paper

Characteristics of Frontal Crashes with Serious Injuries and Airbag Non-deployment

2010-04-12
2010-01-1048
The objective of the present study is to develop a better understanding of the reasons for airbag non-deployment in frontal crashes that produce serious injuries. The FARS data shows an increasing trend of fatal crashes involving airbag non-deployment with a higher fatality risk in recent model year vehicles. The reported number of fatalities in such crashes has increased by about 50 percent (from 500 per year to 780 per year) in the last five years. The percentage of fatalities with non-deployments has doubled in vehicles model year 1998 and later compared to earlier model years. Multiple impacts contribute to about 90 percent of the FARS frontal crashes with non-deployments. Crashes with a curb hit or guardrail impact as the first harmful event and a narrow impact crash with a tree or pole as a subsequent harmful event is the most frequent crash scenario in non-deployment related fatal crashes.
X