Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

Extraction of Information From Noisy 3-Year-Old Atd Response Signals in Static Out-Of-Position Airbag Tests

2001-06-04
2001-06-0101
This paper presents an approach to analyze experimental data contaminated with noise from Anthropomorphic Test Devices (ATDs). This approach is based on information extraction procedures and they are illustrated through an analysis of Hybrid III 3-year-old and Q3 ATDs test data. The methodology used for extracting information and ATD test data analysis includes optimized filtering, spectral coherence, auto- and cross-correlation analysis, and Kalman filtering. This work investigates promising techniques of extracting information from noisy ATD signals that are not commonly used in the automotive industry.
Technical Paper

HYBRID III DUMMY NECK RESPONSE TO AIR BAG LOADING

2001-06-04
2001-06-0130
This paper discusses issues related to the Hybrid III dummy head/neck response due to deploying air bags. The primary issue is the occurrence of large moment at the occypital condyles of the dummy, when the head-rotation with respect to the torso is relatively small. The improbability of such an occurrence in humans is discussed in detail based on the available biomechanical data. A secondary issue is the different anthropometric characteristics of the head/neck region of the Hybrid III dummy when compared to humans. Different modes of interaction between the deploying air bag and the Hybrid III dummy’s neck are discussed. Key features of the dummy’s response in these interaction modes have been described in light of the laxity of the atlanto-occypital joint and the effect of the neck muscle pairs. Issues for improving the biofidelity of the Hybrid III dummy’s neck response due to deploying air bags are discussed.
Technical Paper

OOP Response of THOR and Hybrid-III 50th% ATDs

2006-04-03
2006-01-0065
The responses of the THOR and the Hybrid-III ATDs to head and neck loading due to a deploying air bag were investigated. Matched pair tests were conducted to compare the responses of the two ATDs under similar loading conditions. The two 50th percentile male ATDs, in the driver as well as the passenger positions, were placed close to the air bag systems, in order to enhance the interaction between the deploying air bag and the chin-neck-jaw regions of the ATDs. Although both ATDs nominally meet the same calibration corridors, they differ significantly in their kinematic and dynamic responses to interaction with a deploying air bag. The difference between the structural designs of the Hybrid-III's and the THOR's neck appears to result in significant differences in the manner in which the loads applied on the head are resisted.
Technical Paper

Technical Specifications of the SID-IIs Dummy

1995-11-01
952735
The SID-IIs is a small [s], second-generation [II] Side Impact Dummy [SID] which has the anthropometry of a 5th percentile adult female. It has a mass of 43.5 kg, a seated height of 790 mm, and over 100 available data channels. Based on the height and mass, this is equivalent to an average 12-13 year old adolescent. The state-of-the-art SID-IIs has special application in evaluating the performance of side impact airbags. The dummy has undergone prototype testing and will shortly be available for worldwide evaluation. This paper describes the technical details of the dummy, its biomechanical design targets, how well it met those targets, its validation requirements, and its instrumentation. The dummy is the product of a joint development agreement between the Occupant Safety Research Partnership (OSRP) of USCAR and First Technology Safety Systems.
Technical Paper

Effect of Airbag Porosity, Mass Flow and Load Limiter on the 5th and 50th Hybrid Dummies in a 35 Mph Crash

2006-04-03
2006-01-0677
Restraint systems play an important role in managing the energy of occupants during a crash event. Belt and airbag systems complement each other in order to gradually decelerate the occupant. However, the seating position of the 5th percentile female and 50th percentile male occupants forces the need to manage this energy in different ways. MADYMO simulation of a generic vehicle-restraint system with a driver side 5th and a 50th percentile Hybrid III dummy were done for a typical frontal impact. The belt system had a retractor/load limiter, but no pretensioner. The effect of airbag fabric porosity, inflation rate and seat belt load limiting ability were evaluated for both occupants. Parameters examined that affect system rebalancing to achieve the highest star rating were HIC and 3ms Chest acceleration.
Technical Paper

Hybrid III Dummy Neck Issues

2005-04-11
2005-01-1704
While the Hybrid III anthropomorphic test device (ATD) family has experienced a lengthy period of development, and is an essential part of vehicle safety regulation, several issues associated with the ATD's head/neck design and the neck dynamic response due to airbag loading have been identified. As a result, the response of the Hybrid III neck under a number of airbag loading conditions could be an “artifact” of the ATD and not representative of the live human. One area of concern relates to the method of incorporating the human neck muscles into the neck response and how this affects the out-of-position (OOP) tests mandated in the new FMVSS 208. The results of a series of sled and OOP tests are presented in this paper to elaborate on the nature and the magnitude of the ATD's neck response “artifact”. In addition, the complication associated with balancing in-position and OOP requirements as a result of this “artifact” is highlighted.
Technical Paper

The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction

2001-11-01
2001-22-0008
The purpose of this study is to evaluate the hard tissue injury -predictive value of various thoracic injury criteria when the restraint conditions are varied. Ten right-front passenger human cadaver sled tests are presented, all of which were performed at 48 km/h with nominally identical sled deceleration pulses. Restraint conditions evaluated are 1) force-limiting belt and depowered airbag (4 tests), 2) non-depowered airbag with no torso belt (3 tests), and 3) standard belt and depowered airbag (3 tests). Externally measured chest compression is shown to correspond well with the pre sence of hard tissue injury, regardless of restraint condition, and rib fracture onset is found to occur at approximately 25% chest compression. Peak acceleration and the average spinal acceleration measured at the first and eighth or ninth thoracic vertebrae are shown to be unrelated to the presence of injury, though clear variations in peaks and time histories among restraint conditions can be seen.
Technical Paper

Application of Extreme Value Theory to Crash Data Analysis

2017-11-13
2017-22-0011
A parametric model obtained by fitting a set of data to a function generally uses a procedure such as maximum likelihood or least squares. In general this will generate the best estimate for the distribution of the data overall but will not necessarily generate a reasonable estimation for the tail of the distribution unless the function fitted resembles the underlying distribution function. A distribution function can represent an estimate that is significantly different from the actual tail data, while the bulk of the data is reasonably represented by the central part of the fitted distribution. Extreme value theory can be used to improve the predictive capabilities of the fitted function in the tail region. In this study the peak-over-threshold approach from the extreme value theory was utilized to show that it is possible to obtain a better fit of the tail of a distribution than the procedures that use the entire distribution only.
Journal Article

Hybrid III Head/Neck Analysis Highlighting Nij in NCAP

2012-04-16
2012-01-0102
Nij, a function of upper neck forces and moment, plays a dominant role in the vehicle's star rating under the new NHTSA NCAP front impact program. This is mainly due to an artifact in the mapping of the Nij into the “risk” value used in the star rating, and the fact that the neck region is not weighted appropriately to reflect its real world significance relative to the other body regions in the NCAP rating. New test data also show that compared with the 50th male driver Nij, the 5th female passenger Nij is significantly more challenging to contain and therefore it is more dominant in the star rating. This paper describes the Hybrid III dummy head and neck impact response and provides a method to determine the external force acting on the head. The force and its acting point on the head are determined from head acceleration, angular acceleration, and the upper neck forces.
X