Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of Intelligent Active Suspension System Controller Design Techniques on Vehicle Braking Characteristics

2018-12-04
Abstract This article presents a comprehensive investigation for the interaction between vehicle ride vibration control and braking control using two degrees of freedom (2DOF) quarter vehicle model. A typical limited bandwidth active suspension system with nonlinear spring and damping characteristics of practical hydraulic and pneumatic components is controlled to regulate both suspension and tire forces and therefore provide the optimum ride comfort and braking performance of an anti-lock brake system (ABS). In order to design a suitable controller for this nonlinear integrated system, various control techniques are followed including state feedback tuned using Linear Quadratic Regulator (LQR), state feedback tuned using Genetic Algorithm (GA), Proportional Integrated (PI) tuned genetically, and Fuzzy Logic Control (FLC). The ABS control system is designed to limit skid ratio below threshold of 15%.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Journal Article

Torque Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt Continuous Variable Transmission

2013-10-15
2013-32-9042
This paper concerns a torque control of a rear wheel of a motorcycle equipped with a rubber/aramid belt electronically-controlled continuous variable transmission where a primary sheave position is controlled by an electric motor. In particular, the paper discusses a method to calculate a required engine torque and a required primary sheave position, given reference values of a rear-wheel torque and an engine rotational velocity. The method forms a foundation of a hierarchized traction control where a higher control layer decides an optimal motorcycle motion (rear-wheel torque and engine rotational velocity) and a lower control layer realizes the motion by actuators (engine torque and primary sheave position). Difficulties of the control are due to large mechanical compliance of the rubber/aramid belt, which leads to an inevitable lag from the primary sheave position to a speed reduction ratio.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Journal Article

Design and Testing of ABS for Electric Vehicles with Individually Controlled On-Board Motor Drives

2014-08-01
2014-01-9128
The paper introduces the results of the development of anti-lock brake system (ABS) for full electric vehicle with individually controlled near-wheel motors. The braking functions in the target vehicle are realized with electro-hydraulic decoupled friction brake system and electric motors operating in a braking mode. The proposed ABS controller is based on the direct slip and velocity control and includes several main blocks for computing of predictive (feedforward) and reactive (feedback) brake torque, wheel slip observer, slip target adaptation, and the algorithm of brake blending between friction brakes and electric motors. The functionality of developed ABS has been investigated on the HIL test rig for straight-line braking manoeuvres on different surfaces with variation of initial velocity. The obtained experimental results have been compared with the operation of baseline algorithm of a hydraulic ABS and have demonstrated a marked effect in braking performance.
Journal Article

Influence of the Tire Inflation Pressure Variation on Braking Efficiency and Driving Comfort of Full Electric Vehicle with Continuous Anti-Lock Braking System

2015-04-14
2015-01-0643
The presented study demonstrates results of experimental investigations of the anti-lock braking system (ABS) performance under variation of tire inflation pressure. This research is motivated by the fact that the changes in tire inflation pressure during the vehicle operation can distinctly affect peak value of friction coefficient, stiffness and other tire characteristics, which are influencing on the ABS performance. In particular, alteration of tire parameters can cause distortion of the ABS functions resulting in increase of the braking distance. The study is based on experimental tests performed for continuous ABS control algorithm, which was implemented to the full electric vehicle with four individual on-board electric motors. All straight-line braking tests are performed on the low-friction surface where wheels are more tended to lock.
Journal Article

Development of ABS ECU with Hardware-in-the-Loop Simulation Based on Labcar System

2014-09-28
2014-01-2524
This paper presents how hardware-in-the-loop (HIL) simulations have been used for testing during the development of ABS (Anti-lock Braking System). The Labcar system of ETAS is a popular tool for HIL tests. The vehicle model which is built in Matlab/Simulink is downloaded to run in RTPC (Real-time PC). The Labcar software, Integration Platform (IP), can configure boards which is a link between the model and ABS ECU. In this paper, a classical logic threshold control algorithm is adopted in ABS ECU. Through Labcar Experiment Environment (EE) various parameters can be monitored and modified conveniently. The HIL test of ABS ECU is implemented on high or low - adhesion road respectively. The results show that, although response lag exists in the hydraulic braking system, the curves of velocity and pressure in wheel cylinders can be close to those on real road with proper adjustment of control parameters.
Technical Paper

EV System Modelling and Co-Simulation with Integrated HVAC and Auxiliary Models

2021-09-22
2021-26-0172
The current simulation models of EV and ICE Vehicles are well known in industry for their use in estimating the fuel economy or Range benefits because of controller calibrations and component sizing. However, there is a gap in understanding the behavior of accessories such as HVAC, power steering and other such auxiliary loads and the energy losses associated with them. Impact of thermal behavior of electronics on vehicle range also needs to be studied in detail. These kinds of studies help OEM and tier 1 manufactures in improving their design concepts significantly with minimum cost and development time. Hence, the focus of this study is on building simulation models of thermal, electrical, traction and control circuits of a typical electric vehicle. These models are then integrated, and analysis is performed to understand vehicle system level performance metrics.
Journal Article

Development of Three-Motor Electric Vehicle “EMIRAI 2 xEV”

2015-04-14
2015-01-1597
Mitsubishi Electric has developed a concept car “EMIRAI 2 xEV” that features an electric vehicle (EV) powertrain for safe, comfortable, eco-friendly driving experiences in the future. The vehicle was exhibited during the 2013 Tokyo Motor Show and the 2014 Automotive Engineering Exposition. The xEV is a four-wheel-drive EV with three motors: a water-cooled front motor and two air-cooled rear motors with integrated inverters. The rear wheels can be driven independently. The degrees of freedom of the actuation can realize improved maneuverability and safety. The vehicle is also equipped with an onboard charger with a built-in step down DC/DC converter, an EV control unit, a battery management unit, and electric power steering. All of the instruments are developed by Mitsubishi Electric. Motion control systems for the xEV have been developed based on our proprietary motor control technology.
Journal Article

Performance Analysis of the ABS Control on Parallel Hybrid Electric Vehicle Equipped with Regenerative Braking System

2015-08-01
2015-01-9131
Anti-lock brake system (ABS) prevents the vehicle wheels from locking up and reduces the total stopping distance as far as possible. The current implementation is based on a traditional hydraulic disk brake and small wheel inertia. Seen the need for making vehicles cleaner in the future, it can be expected that an increasing the amount of vehicles will be equipped with electric motors able to regenerate energy during braking. The addition of this electric motor changes the properties of the brake actuation and has an influence on the wheel inertia. However, the objective of this paper is to study the change of the dynamics induced by the regenerative braking which assess the performance of traditional ABS systems on the parallel hybrid electric vehicles. The MATLAB software to establish the simulation model, which include the single wheel dynamic model, hydraulic brake system model, electric motor brake system model and traditional ABS controller were used.
Journal Article

Regenerative Braking Control for High Level Deceleration on Low Mu Surface

2015-05-01
2015-01-9141
Hybrid and electric vehicle (H/EV) technology is already well established in the automotive industry and a great majority of car manufacturers offer vehicles with alternative propulsion systems (hybrid or electric - H/E). This advancement, however, does not mean that all technical aspects of H/E propulsion systems have already been encapsulated or even fully understood. This statement is specifically valid for regenerative braking technology. In order to regenerate the maximum possible energy, which may be limited in real applications (e.g. by the charging ratio of the energy storage device(s)), the interaction of regenerative braking and the active driving safety systems (ADSSs) such as the anti-lock braking system (ABS) needs to be taken in to account. For maximum recaptured energy via electric motor (E-Motor) braking, the use of regenerative braking, which generates decelerations greater than 0.1g, should be deployed.
Journal Article

Experimental Investigation of the Influence of Tire Design Parameters on Anti-lock Braking System (ABS) Performance

2015-04-14
2015-01-1511
Anti-lock Braking System (ABS) is a critical safety component and its performance is crucial for every vehicle manufacturer. The tire plays an important role during an ABS braking maneuver as it is the component that connects the vehicle to the ground and is responsible for generating braking force. The steady-state and transient properties of the tire affect the operation of the vehicle's ABS system and consequently affects its performance/ operational efficiency. The main objective of this study is to investigate how tire design changes influence its interaction with the ABS and its eventual effect on stopping distance. This was conducted through an experimental study where tires were built with three levels of variation in carcass stiffness, tread stiffness and tread compound. Following this, ABS braking maneuvers were performed on two instrumented vehicles including a mid-tier sedan and a high-performance sports car.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Journal Article

Integration of Active Braking System in Multi-Body Systems Tool to Improve Prediction of Braking Loads

2017-03-28
2017-01-0418
An increase in data measurement and recording within vehicles has allowed Anti-lock Braking Systems (ABS) to monitor a vehicle’s dynamic behavior in far more detail. This increased monitoring helps to improve vehicle response in scenarios such as braking whilst cornering and braking on uneven surfaces. The Durability and Robustness (D&R) CAE department within Jaguar Land Rover discovered that the lack of a complex ABS system in virtual vehicle models was contributing to poor lateral and longitudinal loads correlation throughout the suspension and mounting systems. D&R CAE started a project to incorporate Continental’s ABS system, provided by ‘©Continental AG’ for physical JLR vehicles, into SIMPACK virtual vehicles by means of a co-simulation (2017 n.d.). The work involved collaboration between 3 departments in Jaguar Land Rover and ultimately led to implementation of the ABS into the JLR standard automotive virtual database.
Journal Article

Design of Anti-lock Braking System Based on Regenerative Braking for Distributed Drive Electric Vehicle

2018-04-03
2018-01-0816
In this article, the regenerative braking system is designed, which can realize the torque allocation between electric braking and hydraulic braking, where the cost function designed in this article considers factors of braking torque following effect, energy regenerative power, and hydraulic braking consumed power. In addition, a complete anti-lock braking system (ABS) is designed, which is based on regenerative braking. With the optimal slip ratio as control target, target wheel speed, control wheel speed, braking torque control strategy, and enable/disenable control logic of ABS are determined. By MATLAB/Simulink-DYNA4 co-simulation and real vehicle test, the feasibility and applicability of ABS based on regenerative braking are verified, under the condition of small severity of braking.
Journal Article

An Investigation Into New ABS Control Strategies

2016-04-05
2016-01-1639
An investigation into two new control strategies for the vehicle Anti-lock Braking System (ABS) are made for a possible replacement of current non-optimal slip control methods. This paper applies two techniques in order to maximize the braking force without any wheel locking. The first considers the power dissipated by the brake actuator. This power method does not use slip to construct its reference signal for control. A heuristic approach is taken with this algorithm where one searches for the maximum power dissipated. This can open up easier implementation of regenerative braking concurrently with ABS on an electro-hydraulic braking system. Parameter scheduling is explored in this algorithm. The second algorithm employs the use of perturbation based Extremum Seeking Control (ESC) to provide a reference slip and a Youla controller in a negative feedback loop.
Journal Article

Design and Performance Analysis of a Novel Regenerative Braking System for Electrified Passenger Vehicles

2016-04-05
2016-01-0438
A novel type of regenerative braking system for electric vehicles is proposed in this paper. Four pressure-difference-limit valves, two relief valves and two brake pedal simulators, are added to the layout of a conventional four-channel hydraulic modulator. The cooperation of relief valves and hydraulic pumps provides a stabilized high-pressure source. Pressure-difference-limit valves ensure that the pressure in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of anti-lock braking system and electronic stability program are integrated in this regenerative braking system. The models of regenerative braking controller and vehicle dynamics are built in MATLAB/Simulink. Hydraulic brake model is built in AMESim through a parameterized and modularized method. Meanwhile, the control strategy of hydraulic brake modulation and brake force distribution are designed.
Journal Article

An Indirect TPMS Algorithm Based on Tire Resonance Frequency Estimated by AR Model

2016-04-05
2016-01-0459
Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis.
Journal Article

A New Torque Distribution Strategy for Blended Anti-Lock Braking Systems of Electric Vehicles Based on Road Conditions and Driver's Intentions

2016-04-05
2016-01-0461
This paper proposes a new braking torque distribution strategy for electric vehicles equipped with a hybrid hydraulic braking and regenerative braking system. The braking torque distribution strategy is proposed based on the required braking torque and the regenerative braking system’s status. To get the required braking torque, a new strategy is designed based on the road conditions and driver's braking intentions. Through the estimated road surface, a robust wheel slip controller is designed to calculate the overall maximum braking torque required for the anti-lock braking system (ABS) under this road condition. Driver's braking intentions are classified as the emergency braking and the normal braking. In the case of emergency braking, the required braking torque is to be equal to the overall maximum braking torque. In the case of normal braking, the command braking torque is proportional to the pedal stroke.
X