Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2012-02-15
Zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing and boosting; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions. Presenter Fabio Bozza, Universita di Napoli
Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Video

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-06-18
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Video

Development of DPF/SCR System for Heavy Duty Diesel Engine

2012-06-15
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
Video

Modernizing the Opposed-Piston Engine for Efficient, Clean Transportation

2012-05-10
Historically, the opposed-piston, two-stroke (OP2S) diesel engine set combined records for fuel efficiency and power density that have yet to be met by any other engine type. However, with modern emissions standards, wide-spread development of this engine for on-highway use stopped. At Achates Power, state-of-the-art analytical tools and engineering methods have produced an OP2S engine that, when compared to a leading medium-duty engine, has demonstrated a 21% fuel efficiency gain and engine-out emissions levels meeting U.S. EPA10 with conventional after-treatment. Among the presentation topics covered are thermodynamic efficiency, demonstrated engine results, cost and weight advantages, and overcoming two-stroke engine challenges. Presenter David Johnson, Achates Power Inc.
Video

Development of High-Efficiency Rotary Engines

2012-05-10
In this presentation, we will explain how the traditional Miller Cycle - which has its limitations in the traditional four-stroke, Otto Cycle engine provides new opportunities for greater fuel efficiency gains and engine downsizing when incorporated in a split-cycle combustion process. Results will also be shared from studies showing how these implementations can provide both significant drops in fuel consumption and increases in power when incorporated into some of today's most economic vehicles. Presenter Stephen Scuderi, Scuderi Group LLC
Collection

Climate Control, 2010

2010-08-02
Climate control is a defining vehicle attribute that has strong interaction with other vehicle systems. Also, performance and quality of the climate control system are critical to customer satisfaction. The 10 papers in this technical paper collection cover alternative A/C systems, multi-zone climate control, cabin air filtration, automatic controls, and optimized energy consumption.
Collection

Thermal Systems & Management Systems, 2007

2010-09-23
Providing thermal comfort to the occupants and thermal management of components in an energy efficient way has challenged the automotive industry to search for new and innovative approaches to thermal management. Hence, management of heat flow, coolant flow, oil flow, and airflow is extremely important as it directly affects the system performance under full range of vehicle operating conditions. The 31 papers in this technical paper collection describe methods or concepts to increase efficiency, improve occupant comfort, improve test methodology and minimize the environmental impact of the climate control system; and thermal management components addressing design and/or application topics.
Collection

Thermal Systems Modeling and Simulation, 2011

2011-04-12
The 13 papers in this technical paper collection focus on thermal systems modeling and simulation. Topics covered include: localized heating and cooling strategies for energy efficient HVAC system; interpretation tools and concepts for heat management in the drive train of the future; thermal management of lead acid battery (Pb-A) in electric vehicle; physics based approach of heat exchanger models for vehicle thermal simulation; and more.
Collection

Climate Control, 2011

2011-04-12
Climate control is a defining vehicle attribute. Performance and quality of the climate control system are critical to customer satisfaction. The 10 papers in this technical paper collection discuss recent advances in climate control. Topics covered include: alternative A/C systems, multi-zone climate control, cabin air filtration, automatic controls, and optimized energy consumption.
Collection

Thermal Systems Modeling and Simulation, 2012

2012-04-13
The 14 papers in this technical paper collection discuss thermal systems modeling and simulation. Topics covered include fuel efficiency and thermal performance, exhaust system manifold development, engine cooling systems with a double circuit, CFD analysis, and more. The 14 papers in this technical paper collection discuss thermal systems modeling and simulation. Topics covered include fuel efficiency and thermal performance, exhaust system manifold development, engine cooling systems with a double circuit, CFD analysis, and more.
Collection

Thermal Systems Modeling and Simulation, 2014

2014-04-01
This technical paper collection focusses on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers included will range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods.
Collection

Heat Transfer and Advances in Thermal & Fluid Sciences, 2013

2013-04-09
The 13 papers in this technical paper collection focuses on fundamental numerical (1D and 3D CFD) and experimental research in the areas of heat and mass transfer and fluid flow that impacts engine and vehicle performance and design. Subjects include convection, conduction, radiation, porous media, and phase change including boiling, condensation, melting and freezing.
Collection

Thermal System Components, 2014

2014-04-01
This technical paper collection features components used for thermal management. The papers address design, application and systems related topics.
Collection

Energy Efficiency of Thermal Systems, 2014

2014-04-01
Proper thermal management can significantly contribute to overall system energy efficiency. This technical paper collection highlights the latest developments in thermal management energy efficiency.
Collection

Thermal Systems Modeling and Simulation, 2015

2015-04-14
This technical paper collection focuses on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers in this collection will range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods.
Collection

Climate Control, 2018

2018-04-03
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance is critical to customer satisfaction. The primary objective is to deliver occupant safety and thermal comfort at minimum energy consumption, yet the system has strong design interaction with other vehicle systems. Noise, Air Quality, and Energy ace are just a few of the recent advances.
X