Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Spatially Resolved Temperatures in Inhomogeneous and Continuously Changing Disk Brake Interfaces

2011-09-18
2011-01-2347
Widely known is the fact that friction and wear characteristics of disk brakes are subject to pronounced temperature dependencies. For systems with organically bound brake pads, many thermally induced material changes can occur, ranging from degassing of the phenolic resin binder up to degradation of fibers and melting of metallic components. All these effects modulate the surface structure between pad and disk. They are a major contributor to friction layer dynamics [1] and directly influence the system's performance. Concerning the calculation of contact temperatures in disk brakes, several attempts have been made in the past. Most of them, however, use drastic assumptions (e.g. homogenous materials and ideal contact), which limit the results to qualitative approximations [2]. Recent studies already include the multi-material structure of brake pads. These give indications on how material mixtures must be changed, in order to modify contact temperatures into a certain direction [3].
Technical Paper

Tribological Aspects of Carbon Ceramic and Cast-Iron Brake Rotors with Organic Pad Materials in Simulation and Measurement

2009-10-11
2009-01-3010
Over the last two decades, intensive research in the field of innovative brake rotor materials for high performance vehicles has been done. Due to the market demand for lightweight components with high strength even at elevated temperatures, most new concepts are based on fiber-reinforced materials [1]. The most prominent concept is a silicon carbide matrix material with embedded carbon fibers (C/C-SiC), which penetrated into the market for brake rotors in 2000 [2,3]. Such carbon ceramic brake rotor systems (CKB) have already been made available for a wide range of premium sedans, SUVs and sports cars. In terms of tribology, these rotors pose new challenges for an understanding of the relevant friction phenomena in the boundary layer, as well as for suitable formulations of brake pad materials. The brake system's macroscopic tribological performance with such pads is determined by a closed-loop interaction between heat, wear and sliding resistance on the micro scale.
Technical Paper

Towards a Control Theory Interpretation of Material Ingredients' Impact on Friction Performance

2010-10-10
2010-01-1671
Brake pad materials in today's commercially marketed vehicles are usually complex phenolic resin based composites with numerous ingredients. Since the abandonment of asbestos fibers, different material classes evolved in Europe (low steel), North America (semimet) and Asia (NAO), which specifically meet the requirements of the respective market [ 1 ]. For these complex materials, no a-priori prediction of friction and wear performance is possible today [ 2 ]. Research over the past decade revealed that friction power and wear debris are interrelated [ 3 ] and that the topography of the friction layer shows a very rich dynamic [ 4 ]. The respective processes can be well described with a family of dynamic friction laws, which is suitable for the description of AK-Master test results [ 5 ], as well as for the understanding of history dependent high frequency effects.
Technical Paper

Towards an Explicit Computation of Wear in Brake Materials

2009-10-11
2009-01-3048
Although the aspect of wear is generally of high importance in the development of brake materials, a prediction of the wear characteristics, the wear distribution and the wear rate is nearly impossible up to date. This problem has several reasons. Taking a look into the interface dynamics between disc and pad, the growth and destruction of hard and thin structures, so-called “patches” can be found. These patches protect the softer pad ingredients from wear, so wear is not homogeneously distributed in the interface. Thus for the comprehension of the wear-determining parameters this process has to be understood. This paper dedicates to this question and identifies some material-design criteria with respect to wear rates.
Technical Paper

Measurement of Particle Dynamics on the Real Vehicle in Different Driving Scenarios with Swarm Sensors

2021-10-11
2021-01-1299
Due to the increase in public attention in the analysis of non-exhaust emission sources because of the growing electrification of vehicles, measurements have been performed in recent years to develop a consistent test standard. In particular, the consideration of tyre and brake abrasion took a predominant position due to the small particle sizes. With measurements under controlled and laboratory-like athmosphere, for example for brakes on dynamometers, attempts have been made to create a uniform test standard according to the Worldwide harmonized Light vehicles Test Procedure (WLTP). However, a transfer to the real driving environment is not yet feasible because of many external disturbance variables, such as the wheel housing or atmospheric variables. Typical reference measurement sensors in the vehicle are only suitable to a limited extent for mobile operation due to their size and the necessary measurement infrastructure.
Technical Paper

Adaptronic Actuator to Minimize the Pins Misalignment on Pin-on-Disc Testers

2018-10-05
2018-01-1892
The Automated Universal Tribotester (AUT) represents a fully automated reduced scale brake dynamometer and was developed by the Institute of Dynamics and Vibrations at TU Braunschweig. The setup is based on the pin-on-disc principle. The downscaled test specimen is brought to contact to the disc, loaded and guided via the load unit, which was specifically designed for this purpose. It is laid out as a combination of parallel and serial leaf springs, facilitating a friction free and horizontal motion. The stiffness in radial and tangential directions are much higher than in normal orientation. If the test specimen has a two-dimensional, flat contact surface, the misalignment of the pin in a Pin-on-Disc setup is a phenomenon that appears even in very stiff and robust Pin-on-Disc testers. The measured friction forces are not sensitive to the tilting movement, but the wear processes that take place in the contact zone are.
Technical Paper

The Influence of Differential Pad Wear on Low-Frequency and High-Frequency Brake Squeal

2019-09-15
2019-01-2130
The NVH behavior of disc brakes in particular, is in the focus of research since a long time. Measurements at a chassis dynamometer show that brake pad wear has a significant influence on the occurrence of low- and high-frequency squealing [1]. It is suspected that high-frequency squealing is more likely to occur when the wear difference between the inner and outer brake pad is small. In the other case, if the differential wear rate between the inner and outer pads becomes higher, the prevalence of low-frequency squealing increases. In order to examine this hypothesis, this work focuses on a simplified model of a commercial brake system [2]. In a first step, the inner pad’s wear is iteratively increased, while the wear on the outer pad remains unaffected. In a second step, the coefficient of friction at the worn pad is iteratively increased to investigate the influence on the low and high-frequency squealing.
Technical Paper

Ceramic Bound Materials: A Suitable Solution for Light Brakes

2019-09-15
2019-01-2109
A ceramic bound matrix has been investigated to be used as a friction material. The materials were produced by means of ceramic technology using frits containing silicates, and ceramic friction modifiers such as tin oxide, zircon, iron oxide, magnesium oxide. Four formulations were tested by means of a tribometer (pin-on-disc tester) using a gray cast iron counterpart. Test section included speeds between 1 and 12 ms-1, and loads between 25 and 400 N. The coefficient of friction of the tested specimens were between 0.7 and 0.4, and exhibited sensitivity to speed at low loads (25 N), while they are quite stables at high loads (400N). The characterization of the tribolayers was carried out by means of scanning electron microscopy. The four developed materials were named A, B, C, and D. They exhibited different wear rates and coefficients of friction. All the materials exhibited sensitivity to speed, while showed a lower sensitivity to load.
Journal Article

Investigation of Influences on Brake Pad Wear

2020-10-05
2020-01-1614
To date, no generally valid statements can be made about the service life of brake pads, which may be due to factors such as driving style, the friction material used or the varying vehicle weight. While dynamic friction models including friction history are already established [1], the investigation of wear and wear dust behavior is currently in the focus of many research projects. One example is the investigation of calculation models for brake pad wear while neglecting the temperature development in the brake [2]. In cars, temperatures of up to 800°C occur in the brake under high loads, which leads to a significant increase in wear. Accordingly, the question arises how an estimation of brake pad wear can be applied to highly dynamic load cases. To do this, however, the processes taking place in the boundary layer between pad and disc must first be comprehensively understood and described.
Journal Article

An Experimental Setup for Investigations on the Boundary Layer Dynamics

2020-10-05
2020-01-1617
The frictional behavior of a tribological contact is influenced by the dynamics in the forming boundary layer. Recurring structures, built up through self-organizing effects, were found in various frictional systems. To investigate those phenomena on a macroscopic scale and to better understand dynamical processes such as the formation and decay of contact patches, the first revision of the Wear Debris Investigator (WDI) was introduced in 2017. A friction gap is formed between two coaxial horizontally arranged discs. To mimic the presence of particles, artificial wear dust is fed into the gap. With a camera the formation of the boundary layer is recorded in situ. An implemented normal force and torque sensor enables to recognize correlations between the formed boundary layer and the occurring frictional forces. Numerous measurements revealed an insufficient precision of the previous WDI.
Technical Paper

Experimental Investigation of Tribochemical Processes in Frictional Contacts Using a Pin-on-Disk Tribometer

2023-11-05
2023-01-1889
Friction in tribological systems can lead to significant energy consumption and wear. While there are several dissipation mechanisms in the frictional boundary layer, the role of chemical processes is not fully understood. The aim of this study is to investigate the influence of chemical reactions on the tribological behavior of sliding friction pairs. In order to carry out initial analyses, minimal mixtures with a few simple components and epoxy resin as a binder are developed, produced and used. A series of experiments are performed on a pin-on-disc tribometer with different minimal mixtures. Temperature and friction coefficient are measured throughout the friction process, and the rubbed surface of the samples is measured in situ. Three types of chemically inert minimal mixtures are developed in the first phase of the experiment.
X