Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

X-by-Wire: Opportunities, Challenges and Trends

2003-03-03
2003-01-0113
This paper will outline the results of a study performed to analyze the market introduction of x-by-wire applications in the context of weak global industry environment, technological and legislative challenges, standardization issues and end customer benefits. This paper attempts to provide a bird-view on influence factors and impacts for the x-by-wire market, including e.g. the end customer's acceptance and legal environment driving further development in specific areas. Further, major driving forces on semiconductor/component level will be outlined regarding e.g. pin-count, computation performance and heat dissipation, but also possible scenarios and solutions towards safe and efficient system design and partitioning.
Technical Paper

TTCAN from Applications to Products in Automotive Systems

2003-03-03
2003-01-0114
This paper outlines the results of a study performed to analyze the mission of TTCAN from applications to products for automotive systems. As commonly acknowledged communication is one of the key elements for future and even present systems such as an automobile. A dramatically increasing number of busses and gateways even in low- to midrange vehicles is putting significant burden upon the validation scenario as well as the cost. Accordingly, numerous new initiatives have been started worldwide in order to find solutions to this; some of them by the definition of enhanced or new protocols. This paper shall have a look particular on the new standard of TTCAN (time-triggered communication on CAN). This protocol is based on the CAN data link layer as specified in ISO 11898-1 and may use standardized CAN physical layers such as specified in ISO 11898-2 (high-speed transceiver) or in ISO 11898-3 (fault-tolerant low-speed transceiver).
Technical Paper

TwinCAN - A New Milestone for Inter-Network Communication

2000-03-06
2000-01-0144
Recent trends in field bus applications, especially in the automotive section, show a very high demand for data exchange between decentralised, intelligent functional units and modules. These functional units can be grouped together to power train applications or body/convenience applications. In many cases, the coupling of local modules is done with one or more independent bus systems. The actual design and the partitioning of the modules strongly depend on application-specific requirements, such as the total amount of data to be transferred or the maximum of the tolerated latency in data delivery. A very powerful and fast field bus is the CAN bus (Controller Area Network), which supports transfers with data rates up to 1 Mbits/s. Due to the higher transmission speed and the standardized functionality, CAN is a very interesting alternative to and improvement on bus systems based on other protocols.
X