Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Electrification of Vehicles at Nissan Motor Company to achieve Zero Tailpipe Emissions

2012-03-29
Nissan Motor Company has recently released the �Nissan Green Program 2016� which is a six-year action plan embodying the company�s environmental philosophy: Symbiosis of People, Vehicles and Nature. One of the key activities of this Program is the successful penetration of Zero-Emission Vehicles into the market which includes electric vehicle (EV) cumulative sales of 1.5M units with our Alliance partner Renault, introduction of a fuel cell electric vehicle (FCEV) into the market, taking a global leadership in supplying batteries for electric drive and creating zero-emission societies. This presentation will highlight some of these key activities. Presenter Kev Adjemian, Nissan Technical Center NA
Video

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2012-03-21
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a single-truth architectural framework. The SAVI approach of Integrate, then Build provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a single-truth reference architectural model.
Video

A Methodology to Assess the Capabilities of a Cluster of Companies: The Case of "Torino Piemonte Aerospace"

2012-03-21
In any new aircraft development program there are many important design decisions that determine profitability potential. The key to making new aircraft profitable is to design features that will command more money than the cost to provide them within the market's ability to absorb them. The business model in this paper shows how to predict or find: 1) the costs to provide various aircraft features; 2) the values that aircraft buyers place on these features; 3) the amount of money that buyers have to commit to them, 4) the open spaces in the market in which to place new designs and 5) the predicted profits from new designs. In this process, this paper extends previous work on the law of value and demand, which states that attributes determine value; value determines price; and that price determines demand. This four-dimensional, non-negative system hosts a business model that describes the features needed to enable aircraft designs to go from concepts to profitable assembly lines.
Video

Using Programming and Simulation to Develop Optimized Processes for Automated Fiber Placement (AFP) CNC Machines

2012-03-21
Many manufacturing companies want to apply AFP technology to complex high-curvature part shapes. As new AFP machine technologies are developed to specifically apply material over complex shapes, new and innovative NC programming approaches are needed to successfully, reliably, and accurately apply material with good consolidation, while meeting the fiber direction and coverage requirements. A big issue with AFP is the production rate vs. part complexity. Most complex shapes can be created with a single .125? wide strip (tow) of material. But the production time would be impractically long. So machine builders create 6, 8, 16, even 32 tow AFP heads, and use the widest tow possible for the highest laydown rates. But then wide compaction rollers on these systems have difficulty consolidating material over curved surfaces, and the minimum steering radius of wider tows challenge the software?s ability to meet the layup requirements.
Video

Exploring the Manual Forming of Complex Geometry Composite Panels for Productivity and Quality Gains in Relation to Automated Forming Capabilities

2012-03-23
In a variety of industries there is a growing need to manufacture high quality carbon fibre epoxy matrix composite structures at greater production rates and lower costs than has historically been the case. This has developed into a desire for the automation of the manufacture of components, and in particular the lay-up phase, with Automated Tape Laying (ATL) and Fibre Placement (AFP) the most popular choices. When used for large primary structures there are such potential gains to be had that both techniques have seen rapid implementation into manufacturing environments. But significant concerns remain and these have limited their wider adoption into secondary structure manufacturing, where manual forming of woven broadgoods is dominant. As a result the manufacture of secondary structures is generally explored for costs reduction through drape simulation and lower cost materials.
Video

Spotlight on Design Insight: The Impact of Additive Manufacturing in Automotive Applications

2016-04-12
In “The Impact of Additive Manufacturing in Automotive Applications”, a professor from Kettering University explains why additive manufacturing will be a game changer for car makers, and how process control is one of the biggest challenges ahead. An engineer at Local Motors in Arizona shows how the company builds its cars using a large-scale 3D printer, including how a variety of materials is being evaluated for optimal performance in this type of application. The episode highlights: The expected positive impact of AM on smaller car makers and suppliers The key difference between small 3D printers and large-scale ones The need to find the best possible material combination so vehicles that are #D-printed are as safe as traditional ones Also Available in DVD Format To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: CustomerSales@sae.org or 1-888-875-3976.
Video

Challenges and Requirements for High Volume Production of Electric Machines

2012-05-16
With automotive electrification, the electric machines show a tendency to share or even replace the dominant role of internal combustion engines in future vehicles. Besides the design and innovation of different electric machines to meet the needs of powertrain and drivetrain performances, high volume production becomes a challenging topic and an un-avoided requirement. Flexible line and sharing line will help the variation of production rate and volume, while the dedicated unique line contributes to large scale of E-motor production. Supplier chain from raw materials, parts to processes has to be built from ground-zero or low grade to mature stage within quality specification and time limitation. Multi function skills, cross area technologies and complex management etc are all required for E-motor manufacturer to grow up with component and equipment suppliers. Reducing cost, improving quality and guaranteeing safety are always the thematic series.
Video

Understanding the Green - and the Not So Green - Consumer

2012-03-27
Automakers, suppliers, public agencies, interest groups and others are increasingly embracing the environment as one of the dominant forces in the US automotive market. All parties have a strong vested interest in understanding how environmental concerns will influence design, production, marketing and usage of tomorrow�s vehicles. A common need of all parties is independent and actionable information to enable them to make better decisions and have the greatest chance of being successful in this uncertain future. Four factors - an uncertain economic climate; a constantly changing governmental regulatory system; advancements in powertrain technology; and ever-present environmental concerns - continue to shape the automotive landscape. While automakers are focused on developing alternative powertrains and alternative fuel options for an increasingly �green� vehicle market, J.D.
Video

High Volume Production of Fiber Reinforced Thermoplastic Parts

2012-03-23
Presented by: Dan Ott Web Industries Director, Business Development, Advanced Composites Market With the growth of Fiber Placement technology as a preferred automation technology in aerospace manufacturing and the rapid growth of new production line installations, it is crucial to provide material in a form which meets all necessary specifications and supports the optimum productivity available from this major capital investment made by the producer of the parts. Achieving these goals happnes when the part designer, AFP machine builder, and the slit tape producer design the best process and format which provides smooth, efficient and rapid delivery of the prepreg slit tape to the Fiber Placement laydown head. Tape size (width), slit width tolerance, spool shape and size, density of prepreg on the spool, spool change-over and handling processes all play a factor in productivity, and creating (or inhibiting) the best ROI on a full-scale AFP production line.
Video

Prepreg Slit Tape and Fiber Placement: Developing High Performance Material Delivery Systems for High-Output AFP Lines

2012-03-23
There are worldwide activities in developing guidelines and standards for fiber optic sensors. Fiber optic sensors (FOS) are increasingly demanded for structural health monitoring purposes and for measurement of physical and chemical quantities because of their specific features. However, they are not yet widely established for practical use due to a lack of guidelines and confirmed standards. Therefore, there are few groups worldwide which are very active in developing standards for use of FOS in different fields, particularly driven from aircraft industry, oil industry or the necessity to provide sensor systems for health monitoring of structures with a certain level of risk. The benefits of guidelines and/or standards on the way to well-validated and well-specified sensor systems will be presented by means of related examples. The presentation will also give an overview on the state-of-the-art and most relevant activities. Results achieved are discussed.
Video

A350XWB Fiber Placement Spars; From R&D Conception Phase to Serial Production

2012-03-23
At the end of 2006, two MTorres engineers visited the plant of Airbus UK in Filton receiving a new challenge: Find a more efficient way to manufacture Carbon Fiber Spars for the new A350 program. The range of possibilities were wide: manual infusion methods (RTM, RIM, RFI...), Automatic Taping & hot forming, or the new technology proposed, Fiberplacement or AFP. Two (2) options were considered: hot forming+ATL and AFP (both using prepeg technology.) The usage of a flat lay-up + hot forming technology was used in the only Airbus program that used carbon fiber for the wing manufacturing so far, the A400M. The expected greater complexity of A350 spar created doubts on the feasibility of using the above process, while the AFP technology, consisting of laying up directly on the final shape of the spar, also raised questions of technical feasibility, apart from the economic ?business case?, in case the productivity of the cell was not big enough. A ?Spar team?
Video

Rare Beef and Rare Earths: Why Process Technology Matters

2012-05-16
Those who are concerned about access to rare earths and other critical minerals for EV powertrains are focused on the exact wrong problem. Mr. Thomas discusses why it's control of process technology, not the raw ores themselves, that dictates cost, availability and performance. Presenter Lawrence B. Thomas, Primet Precision Materials
Video

Development and Demonstration of a Low Emissions Four-Stroke Outboard Marine Engine Utilizing Catalyst Technology

2012-06-18
A conceptual project aimed at understanding the fundamental design considerations concerning the implementation of catalyst systems on outboard marine engines was carried out by Mercury Marine, with the support of the California Air Resources Board. In order to keep a reasonable project scope, only electronic fuel injected four-stroke outboards were considered. While they represent a significant portion of the total number of outboard engines sold in the United States, carbureted four-strokes and direct injected two-strokes pose their own sets of design constraints and were considered to be outside the scope of this study. Recently, three-way catalyst based exhaust emissions aftertreatment systems have been introduced into series production on sterndrive and inboard marine spark ignition engines in North America. The integration of catalyst systems on outboards is much more challenging than on these other marine propulsion alternatives.
Journal Article

Utilization of Man Power, Increment in Productivity by Using Lean Management in Kitting Area of Engine Manufacturing Facility - A Case Study

2018-08-08
Abstract The project of lean management is implemented in General Motors India Private Limited, Pune, India plant. The aim of the project is to improve manpower utilization by removing seven types of wastes using lean management system in kitting process. Lean manufacturing or management is the soul of Just-In-Time philosophy and is not new in Automobile manufacture sector where it born. Kitting area is analogs to the modern supermarket where required components, parts, consumables, subassemblies are kept in bins. These bins are placed in racks so that choosing right part at right time can be achieved easily. Video recording, in-person observation, feedback from online operators and other departments such as maintenance, control, supply chain etc. are taken. It is observed that the work content performed by current strength of operators can be performed by less number of operators. After executing this project, it was possible to reduce one operator and increase manpower utilization.
Journal Article

Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints

2019-12-13
Abstract Joining titanium (Ti) alloys with conventional processes is difficult due to their complex structural properties and ability of phase transformation. Concerning all the difficulties, diffusion bonding is considered as an appropriate process for joining Ti alloys. Ti6Al4V, which is an α+β alloy widely used for aero engine component manufacturing, is diffusion bonded in this investigation. The diffusion bonding process parameters such as bonding temperature, bonding pressure, and holding time were optimized to achieve desired bonding characteristics such as shear strength, bonding strength, bonding ratio, and thickness ratio using response surface methodology (RSM). Empirical relationships were developed for the prediction of the bond characteristics, and sensitivity analysis was performed to determine the increment and decrement tendency of the shear strength with respect to the bonding parameters.
Journal Article

Effect of Tool Tilt Angles on Mechanical and Microstructural Properties of Friction Stir Welding of Dissimilar Dual-Phase 600 Steel and AA6082-T6 Aluminum Alloy

2020-09-09
Abstract The present study aims to join the dissimilar materials such as Dual-Phase (DP) 600 Steel and AA6082-T6 Aluminum (Al) alloy via the friction stir welding (FSW) process with a reduced intermetallic compound (IMC) layer. The five different tool tilt angles of 0°, 0.5°, 1°, 1.5°, and 2° were selected to fabricate the joints. The weld characteristics such as tensile strength, hardness, macrostructure, and microstructure were analyzed. The weld interface was studied by employing an optical microscope and scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The joint produced with a 0.5° tilt angle has achieved the highest ultimate tensile strength (UTS) of 240 MPa. The IMCs were identified as Fe2Al8 and FeAl2 from the joint interface studies.
Journal Article

Enabling Dissimilar Joining of Coated Steels to Aluminum through Impact Spot Welding

2020-09-09
Abstract Direct welding of coated steels to aluminum alloys is challenging due to high energy requirements, decreased weldability, and unstable weld quality. The present study reports the application of a new design approach in vaporizing foil actuator welding (VFAW), where an asymmetric preform shape on the target sheet generated the requisite standoff, enabling direct spot welding of a typical automotive aluminum alloy (6022 T4) and two different zinc-coated steels, galvanized high-strength low-alloy 350 and galvannealed dual-phase 590. The use of the new approach enabled for the first time the ability to spot weld through coating without any preweld surface preparation. Characterization using lap-shear and peel testing revealed strong joints for both the weld pairs (AA 6022 T4-HSLA 350 and AA 6022 T4-DP 590). The weld interface characterized by scanning electron microscopy (SEM) revealed a hierarchical structure and the presence of a typical wavy region.
Journal Article

Residual Stresses and Plastic Deformation in Self-Pierce Riveting of Dissimilar Aluminum-to-Magnesium Alloys

2018-05-08
Abstract In this work, the complex relationship between deformation history and residual stresses in a magnesium-to-aluminum self-pierce riveted (SPR) joint is elucidated using numerical and experimental approaches. Non-linear finite element (FE) simulations incorporating strain rate and temperature effects were performed to model the deformation in the SPR process. In order to accurately capture the deformation, a stress triaxiality-based damage material model was employed to capture the sheet piercing from the rivet. Strong visual comparison between the physical cross-section of the SPR joint and the simulation was achieved. To aid in understanding of the role of deformation in the riveting process and to validate the modeling approach, several experimental measurements were conducted. To quantify the plastic deformation from the piercing of the rivet, micro hardness mapping was performed on a cross-section of the SPR joint.
Journal Article

Effect of Fuel-to-Air Ratio on Oxidation and Interfacial Structure in Galvanizing of a Dual-Phase Steel

2021-04-19
Abstract Automotive-grade high-strength steels are galvanized for improved corrosion resistance. However, selective oxidation of alloying elements during annealing heat-treatment may influence the subsequent zinc (Zn) coating quality. The formation of internal and external oxides depends on the alloy composition, especially the Si/Mn ratio, and the oxygen potential of the annealing atmosphere. In this work, a dual-phase (DP) steel was intercritically annealed with varied fuel-to-air ratios in a direct-fired furnace and then galvanized in a Zn bath with 0.2 wt% Al. The type of internal and external oxides and the interfacial structures between the steel substrate, the Al-Fe-Zn inhibition layer, and the Zn coating were examined by using site-specific focused ion beam (FIB) and transmission electron microscopy (TEM).
Journal Article

Comparison of Formability between Steel and Aluminum Fender Panels

2021-06-02
Abstract Reducing a vehicle’s weight is an efficient method to reduce energy consumption. Aluminum alloy is the best material for lightweight automobiles. However, the poor formability of aluminum means that it is difficult to develop stamping dies. This study designs a suitable forming tool for aluminum fenders. A simulation and an experiment are used to analyze the formability of aluminum fenders. A theoretical calculation, experimental testing, and sampling comparison are used to verify the design. The material properties of steel and aluminum are firstly studied and compared. The results show that a traditional S-type blank die face design is not suitable for aluminum because of its low tensile strength and the potential for elongation. A relatively flat trapezoid blank die face design is proposed to smooth the variation. However, a flat die face for a trapezoidal blank limits stretching, so another design is essential to improve the formability.
X