Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Engine Torque Control Variation Analysis

2008-04-14
2008-01-1016
The growing complexity of engine control systems and integration with transmission and vehicle dynamics controls systems have lead to the use of torque-based engine control. Torque-based control enables flexibility and expandability of the powertrain control system structure. It allows various engine actuation technologies (active fuel management (AFM), cam phasing, supercharger, etc.) to be easily incorporated, and to enable a simpler control structure than current production controls. Torque-based control structure is developed to coordinate and achieve better engine, transmission, hybrid, and vehicle dynamics controls. This paper describes the role of Engine Torque Control in a torque-based control system. It gives an overview of Engine Torque Control architecture with main elements, and discusses control system requirements.
Technical Paper

Algorithm-in-the-Loop with Plant Model Simulation, Reusable Test Suite in Production Codes Verification and Controller Hardware-in-the-Loop Bench Testing

2010-04-12
2010-01-0367
In a math-based control algorithm design, model-based simulation and testing are very important as an integral part of design process. There are many advantages of using modeling and simulation in the algorithm design. In this paper, Algorithm-in-the-Loop and Hardware-in-the-Loop approaches are adopted for a transmission control algorithm development. A practical approach is introduced on how to test the control algorithms with a reliable plant (virtual engine, transmission, and vehicle) model in the closed-loop simulation. In using combination of open-loop and closed-loop simulations, various key behavior test cases are developed and documented for the success of control algorithms development. Secondly, the same test cases are reused and verified against the production codes, which are automatically generated from the math-based control algorithm models.
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
Technical Paper

Validation and Calibration Process of Powertrain Model for Engine Torque Control Development

2004-03-08
2004-01-0902
The growing complexity of engine control systems and its integration with vehicle dynamics controls systems has lead to the use of torque-based engine control. Torque-based control enables flexibility and expandability of the powertrain control system structure. It allows new engine technologies (displacement on demand, cam phasing, supercharger, etc.) to be easily incorporated, to coordinate better engine and transmission controls, and to enable a simpler control structure than current production controls. This paper describes the role of Engine Torque Control in a torque-based control system and it formulates main requirements to a model-based control strategy. Development of this strategy is impossible without an accurate model of powertrain system. There are many publications describing models of powertrain system elements for research purpose, however only few provided us with information about model validation, calibration process and accuracy for production.
X