Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 1431
2010-10-25
Journal Article
2010-01-2165
David Serrano, Olivier Laget, Dominique Soleri, Stephane Richard, Benoit Douailler, Frederic Ravet, Marc Moreau, Nathalie Dioc
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
2010-10-25
Technical Paper
2010-01-2183
Rafael Lugo, Vahid Ebrahimian, Catherine Lefebvre, Chawki Habchi, Jean-Charles de Hemptinne
The adequacy of the fuels with the engines has been often a major goal for the oil industry or car manufacturers. As the formulation of fuels becomes more complex, the use of numerical simulation provides an efficient way to understand and analyze the combustion process. These conclusions become increasingly true with the appearance of second generation biofuels. This paper describes a methodology for the representation of fuels and biofuels using a lumping procedure combined with adequate thermodynamic and thermophysical models. This procedure allows computing different thermodynamic and thermophysical properties for simulation purposes in internal combustion engines. The lumping approach involves reducing analytical data to a few pseudo-components characterized by their molecular weight, critical properties and acentric factor.
2010-10-25
Journal Article
2010-01-2193
Peter Hottenbach, Thorsten Brands, Gerd Grünefeld, Andreas Janssen, Martin Muether, Stefan Pischinger
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. An investigation program is carried out to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. In this paper, fundamental results of the Diesel engine relevant combustion are presented. To enable optimum engine performance a range of different reference fuels have been investigated. The fundamental effects of different physical and chemical properties on emission formation and engine performance are investigated using a thermodynamic diesel single cylinder research engine and an optically-accessible combustion vessel. Depending on the chain length and molecular structure, fuel compounds vary in cetane number, boiling temperature etc. Therefore, different hydrocarbons including n-heptane, n-dodecane, and l-decanol were investigated.
2010-10-25
Technical Paper
2010-01-2209
K. Dean Edwards, Robert Wagner, Thomas Briggs
Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
2010-09-28
Journal Article
2010-32-0016
Giovanni Ferrara, Alessandro Bellissima, Marco Doveri, Francesco Balduzzi
The purpose of this work is to perform an analysis on the modifications necessary to convert a four-stroke engine into a non-conventional two-stroke engine. The first aim of this work is to reach the theoretical advantages of the two stroke engine (high torque values at lower rpm and working regularity) and, at the same time, to avoid the usual problems of the two stroke cycle (short-circuit of fresh air-fuel mixture and consequently pollutant emissions and high specific fuel consumption). The target is to develop a small engine with innovative solutions that allows to obtain high performance coupled with good mechanical and thermodynamic efficiency. The starting base engine is a 125cc four-stroke two-valves scooter engine equipped with a volumetric compressor. The idea is to convert it from four to two stroke cycle, using head valves and adding scavenge ports in the cylinder.
2010-09-28
Technical Paper
2010-32-0035
Dalibor Jajcevic, Matthias Fitl, Stephan Schmidt, Karl Glinsner, Raimund Almbauer
The exhaust system design has an important influence on the charge mass and the composition of the charge inside the cylinder, due to its gas dynamic behavior. Therefore the exhaust system determines the characteristics of the indicated mean effective pressure as well. The knowledge of the heat transfer and the post-combustion process of fuel losses inside the exhaust system are important for the thermodynamic analysis of the working process. However, the simulation of the heat transfer over the exhaust pipe wall is time consuming, due to the demand for a transient simulation of many revolutions until a cyclic steady condition is reached. Therefore, the exhaust pipe wall temperature is set to constant in the conventional CFD simulation of 2-stroke engines. This paper covers the discussion of a simulation strategy for the exhaust system of a 2-cylinder 2-stroke engine until cyclic steady condition including the heat transfer over the exhaust pipe wall.
2010-09-28
Technical Paper
2010-32-0069
Gustavo Fontana, Fabio Bozza, Enzo Galloni, Daniela Siano
In this paper, an experimental and numerical analysis of combustion process and knock occurrence in a small displacement spark-ignition engine is presented. A wide experimental campaign is preliminarily carried out in order to fully characterize the engine behavior in different operating conditions. In particular, the acquisition of a large number of consecutive pressure cycle is realized to analyze the Cyclic Variability (CV) effects in terms of Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV). The spark advance is also changed up to incipient knocking conditions, basing on a proper definition of a knock index. The latter is estimated through the decomposition and the FFT analysis of the instantaneous pressure cycles. Contemporary, a quasi-dimensional combustion and knock model, included within a whole engine one-dimensional (1D) modeling framework, are developed. Combustion and knock models are extended to include the CV effects, too.
2010-10-25
Technical Paper
2010-01-2110
Chris De Boer, Junseok Chang, Shreeram Shetty
Spark ignition gasoline engine efficiency is limited by a number of factors; these include the pumping losses that result from throttling for load control, spark ignition and the slow burn rates that result in poor combustion phasing and a compression ratio limited by detonation of fuel. A new combustion process has been developed based on the patented concept of injection-ignition known as Transonic Combustion or TSCi™; this combustion process is based on the direct injection of fuel into the cylinder as a supercritical fluid. Supercritical fuel achieves rapid mixing with the contents of the cylinder and after a short delay period spontaneous ignition occurs at multiple locations. Multiple ignition sites and rapid combustion combine to result in high rates of heat release and high cycle efficiency. The injection-ignition process is independent from the overall air/fuel ratio contained in the cylinder and thus allows the engine to operate un-throttled.
2010-10-25
Technical Paper
2010-01-2105
Klaus Siegfried Oppenauer, Daniel Alberer, Luigi del Re
This paper presents a detailed optical and thermodynamic analysis of effects which influences the soot formation and oxidation process during Diesel combustion. To measure the actual soot concentration over crank angle an optical sensor was installed on the engine. In combination with a thermodynamic engine process calculation, based on the measured cylinder pressure, several important effects are analyzed and described in detail. The main focus of the paper is to produce knowledge on how soot dynamics is influenced by changed engine control unit (ECU) calibration parameters. A modern 4 cylinder production car Diesel engine was used for the studies, which offers a lot of opportunities to influence combustion by varying injection timing and air path ECU parameters. As a consequence discussion is done on how the analyzed effects are treated by published 0-dimensional simulation models with focus on later control and optimization application.
2010-10-25
Journal Article
2010-01-2091
Michael J. Lance, C. Scott Sluder, Samuel Lewis, John Storey
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with nitrogen oxides (NOx) emissions standards. In order to better understand fouling mechanisms, eleven field-aged EGR coolers provided by seven different engine manufacturers were characterized using a suite of techniques. Microstructures were characterized using scanning electron microscopy (SEM) and optical microscopy following mounting the samples in epoxy and polishing. Optical microscopy was able to discern the location of hydrocarbons in the polished cross-sections. Chemical compositions were measured using thermal gravimetric analysis (TGA), differential thermal analysis (DTA), gas chromatography-mass spectrometry (GC-MS), x-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). Mass per unit area along the length of the coolers was also measured.
2010-10-25
Journal Article
2010-01-2090
Michael Marr, James S. Wallace, Silvio Memme, Sanjeev Chandra, Larry Pershin, Javad Mostaghimi
Surface temperature and heat flux were measured in a single cylinder SI engine piston when uncoated and with two different surface coatings: a metal TBC and YSZ. Average heat flux into the piston substrate was 33 % higher with the metal TBC and unchanged with the YSZ relative to the uncoated surface. The increase with the metal TBC was attributed to its surface roughness. However, the metal TBC and YSZ reduced peak heat flux into the substrate surface by 69 % and 77 %, respectively.
2010-10-25
Technical Paper
2010-01-2119
Andreas Janssen, Martin Muether, Andreas Kolbeck, Matthias Lamping, Stefan Pischinger
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, the Institute for Combustion Engines carried out an investigation program to explore the potential of future biofuel components in Diesel blends. In this paper, thermodynamic single cylinder engine results of today's and future biofuel components are presented with respect to their engine-out emissions and engine efficiency. The investigations were divided into two phases: In the first phase, investigations were performed with rapeseed oil methyl ester (B100) and an Ethanol-Gasoline blend (E85). In order to analyze the impact of different fuel blends, mixtures with 10 vol-% of B100 or E85 and 90 vol-% of standardized EN590 Diesel were investigated. Due to the low cetane number of E85, it cannot be used purely in a Diesel engine.
2010-10-25
Technical Paper
2010-01-2264
Bogdan Radu, Dinu Fuiorescu
This paper study the case of a heavy-duty spark ignition engine fueled with LPG, for which it was demonstrated that the thermal effect of the pre-knock reactions in the end-gas occur in the presence of alkenes, one of the commercial LPG main component. In this sense, the engine was operated at full load, with different spark advances generating different levels of knock, which was characterized in terms of angle and intensity. It was developed a classical two zone thermodynamic combustion model for predicting the end-gas pressure and temperature levels, which are cycle-by-cycle variables. It was made the comparison between the cycles with knock and without and it was find that in the knocking cycles case the end-gas temperature is higher, this situation being attributed to the presence of alkenes in the fuel composition.
2010-04-12
Technical Paper
2010-01-0542
Marcel Skarohlid
This paper deals with the influence of CO, CO₂, N₂, H₂, C₂H₆, C₃H₈ and C₄H₁₀ content in fuel on basic engine integral parameters. The focus is on the influence of biogas fuel composition on engine thermodynamic features. The paper describes the iterative regression method evaluating the influence of individual gas mass fraction and engine operation parameters on cumulative heat release curve of SI engines. The parameters for recalculation of heat release patterns depending on individual gas mass fraction in fuel and operation parameters are derived. The modeled cumulative heat release patterns are converted into burned fuel fraction pattern. The particular outputs are generalized using GT-POWER-based model results.
2010-04-12
Technical Paper
2010-01-0543
Chen Huang, Valeri Golovitchev, Andrei Lipatnikov
A semi-detailed chemical mechanism for combustion of gasoline-ethanol blends, which is based on sub-mechanisms of gasoline surrogate and for ethanol is developed and validated aiming at CFD engine modeling. The gasoline surrogate is composed of iso-octane, toluene, and n-heptane in volumetric proportions of 55%:35%:10%, respectively. In this way, the hydrogen-carbon atomic ratio H/C, which is around 1.87 for real gasoline, is accurately reproduced as well as a mixture equivalence ratio that is important for Gasoline Direct Injection engine applications. The integrated mechanism for gasoline-ethanol blends includes 120 species participating in 677 reactions. The mechanism is tested against experimental data on ignition delay times and laminar flame speeds, obtained for various n-heptane/iso-octane/toluene/ethanol-air mixtures under various equivalence ratios, initial temperatures, and pressures. Chemical, thermodynamic and transport properties used in the calculations are discussed.
2010-04-12
Journal Article
2010-01-0548
Itsuhei Kohri, Yuji Kobayashi, Yukio Matsushima
The technology concerning thermo and fluid dynamics is one of the important fields which have made great progress along with rapid advance in computational resources. Especially, the CFD technology has been proved as successful contribution to the development of the engine cooling system. Therefore, this technology is widely used at early phase of the vehicle development. However, a serious problem has been remained that it does not always give practical precision. Particularly, the cooling fan is one of the primary components in the cooling system to determine the performance, while practical calculation method without depending on large resources has not established.
2010-04-12
Technical Paper
2010-01-0550
Devadatta Mukutmoni, Jaehoon Han, Ales Alejbegovic, Lionel Colibert, Mathieu Helene
Accurate simulation of long term transient thermal convection is critical to automotive related thermal and fluid flow applications. For instance, long term thermal transients are relevant to “key-off” situations in which a moving vehicle brought to a stop leads to a usual initial spike in temperature followed by a drop as the heat sources are turned off. Presented are simulations of a simple tube and plate configuration that captures the contribution of all heat transfer effects and complexities of a vehicle key-off process. The simulations were performed using a coupling between the flow solver and the thermal simulation package that includes conduction and radiation effects. The simulation results were compared with the test data for steady state forced convection cases and transient natural convection cases. Good agreement was observed for both steady and transient simulations.
2010-04-12
Technical Paper
2010-01-0549
Federico Brusiani, Gian Marco Bianchi, Alberto Bianchi D' Espinosa
The fluid dynamic of fully turbulent flows is characterized by several length scales bounded between the flow field dimension (large scales) and the diffusive action of the molecular viscosity (small scale). The large scales of motion are responsible of the main momentum transport while the small scales of motion are responsible of the energy dissipation into heat. In some cases the analysis of the large scales could be enough to explain the behaviour of the fluid dynamic system under investigation but, in other cases, the effect of all the turbulent scales have to be considered. A classic example of the latter working condition is the aerodynamic field where the efficiency is dictated by a fine equilibrium between mean flow conditions (driven by large turbulent scales) and laminar/turbulent boundary layer evolution (driven by small turbulent scales).
2010-04-12
Technical Paper
2010-01-0553
Peter Gullberg, Lennart Löfdahl, Peter Nilsson, Steven Adelman
The most common fan model to use in commercial CFD software today is the Multiple Reference Frame (MRF) model. This is at least valid for automotive under hood applications. Within the industry, for this typical application, this model is commonly known to under predict performance. This under prediction has been documented by the authors' of this paper in SAE paper 2009-01-0178 and VTMS paper 2009-01-3067. Furthermore has this been documented by S.Moreau from Valeo in “Numerical and Experimental Investigation of Rotor-Stator Interaction in Automotive Engine Cooling Fan Systems”, ETC, 7th European Conference on Turbomachinery, 2007. In preceding papers a specific methodology of use has been documented and it has been shown that the MRF model under predicts performance for the airflow in a cooling system commonly with 14% in volumetric flow rate. This is for a system dominated by inertial effects.
2010-04-12
Journal Article
2010-01-0552
Paul M. Rutkowski
Seat cooling systems are becoming more common as luxury features offered by original equipment manufacturers. Despite the extensive research & application of these systems, a thermal model and comfort requirements of the occupant/seat system have not been established. Without a model or thermal criteria for comfort, the seat temperature & humidity conditions required for optimal comfort can not be defined. A synopsis of the thermal comfort conditions required to achieve an occupant's subjective comfort as well as their comfort transition points are explained. In this context a model is designed specifically from a heat and mass transfer perspective between an occupant and a seat cooling system. Focus is given to the local conduction, convection, and evaporative cooling that takes place at the body to seat surface interface.
2010-04-12
Technical Paper
2010-01-0555
Ashok Patidar
This paper broadly describes two computational fluid dynamics (CFD) analysis methods to predict the de-icing phenomenon over the vehicle windshield and front side windows. 1 Solid Modeling Method: In this method, the windshield and window glasses are modeled as solid and 2 Shell Modeling Method: Here, windshield and side window glasses are modeled as shell elements and considered as wall with defined thickness as input condition to capture the correct heat transfer effect due to the conduction and convection from warm air to ice layer. The CFD analyses by both methods are done in two key-steps: a) First, steady state velocity distributions for several different defroster flow rates are calculated; b) Secondly, based on the pre calculated velocity fields, the defogging time is estimated. The solidification and melting model is used to simulate the ice melting process over the glasses available with commercial CFD software Fluent.
2010-04-12
Technical Paper
2010-01-0554
Felix Regin
The influence of environmental changes on underhood and underbody components of a vehicle is an important issue in new vehicle design as increased engine power, cabin comfort demands and package space limitations create an increasingly difficult problem to solve. Sufficient airflow needs to be available for adequate cooling of the underhood components. The amount of air mass flow depends on the underhood geometry details: positioning and size of the grilles, fan operation, and the positioning of the other underhood components. This paper describes a prediction methodology that significantly streamlines the process of passenger car underhood thermal management by utilizing state-of-the-art computer simulation of airflow. The methodology uses a complete 3-D CAD model of all pertinent underhood components of a passenger car with a general purpose Computational Fluid Dynamics (CFD) code to simulate underhood airflow.
2011-04-12
Journal Article
2011-01-0323
Brian James Abels, Kelly Kissock
Compressed air storage is an important, but often misunderstood, component of compressed air systems. This paper discusses methods to properly size compressed air storage in load-unload systems to avoid short cycling and reduce system energy use. First, key equations relating storage, pressure, and compressed air flow are derived using fundamental thermodynamic relations. Next, these relations are used to calculate the relation between volume of storage and cycle time in load-unload compressors. It is shown that cycle time is minimized when compressed air demand is 50% of compressor capacity. The effect of pressure drop between compressor system and storage on cycle time is discussed. These relations are used to develop guidelines for compressed air storage that minimize energy consumption. These methods are demonstrated in two case study examples.
2011-04-12
Technical Paper
2011-01-0410
Richard Patton, George Bennett
A unique engine, based on the regenerative principle, is being developed with the goal of achieving high brake efficiency over a wide power range. It can be characterized as an internal combustion Stirling engine (ICSE). The engine is a split-cycle configuration with a regenerator between the intake/compression cylinder and the power/exhaust cylinder. The regenerator acts as a counter-flow heat exchanger. During exhaust, the hot gases are cooled by the regenerator. The regenerator stores this heat. On the next cycle, compressed gases flow in the opposite direction and are heated by the regenerator. The gases coming from the regenerator into the power cylinder are very hot (~900°C), which provides the necessary gas temperature for auto-ignition of diesel and other fuels.
2011-04-12
Technical Paper
2011-01-0656
Jason A. Lustbader, John P. Rugh, Brianna R. Rister, Travis S. Venson
In the United States, intercity long-haul trucks idle approximately 1,800 hrs per year primarily for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel [1]. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working on solutions to this challenge through the CoolCab project. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. To help assess and improve idle reduction solutions, the CoolCalc software tool was developed.
2010-04-12
Technical Paper
2010-01-1122
Alok Warey, Jean-Paul Hardy, Manuela Hennequin, Marek Tatur, Dean Tomazic, William Cannella
Effects of six different fuels on low temperature premixed compression ignition (PCI) combustion were experimentally investigated in this paper with a light-duty HSDI engine. The PCI combustion concept reduces NOx and smoke emissions simultaneously by low temperature and premixed combustion, respectively. To achieve low temperature and premixed combustion, the ignition delay is prolonged and the injection duration is shortened. Six fuels were chosen to examine the influence of cetane number (CN) and other fuel properties on low temperature PCI combustion. The fuel selection also included a pure Gas- to-Liquid (GTL) fuel and a blend of base diesel and 20% soy based biodiesel (B20). Fuel effects were studied over a matrix of seven part load points in the low temperature combustion mode. The seven part load points were specified by engine speed (RPM) and brake mean effective pressure (BMEP).
2010-04-12
Journal Article
2010-01-1109
Andrea Emilio Catania, Stefano d'Ambrosio, Roberto Finesso, Ezio Spessa
In diesel engines the optimization of engine-out emissions, combustion noise and fuel consumption requires the experimental investigation of the effects of different injection strategies as well as of a large number of engine operating variables, such as scheduling of pilot and after pulses, rail pressure, EGR rate and swirl level. Due to the high number of testing conditions involved full factorial approaches are not viable, whereas Design of Experiment techniques have demonstrated to be a valid methodology. However, the results obtained with such techniques require a subsequent critical analysis, so as to investigate the cause and effect relationships between the set of engine operating variables and the combustion process characteristics that affect pollutant formation, noise of combustion and engine efficiency.
2010-04-12
Technical Paper
2010-01-0619
James Szybist, Matthew Foster, Wayne R. Moore, Keith Confer, Adam Youngquist, Robert Wagner
Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock-limited compression ratio of ethanol-gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single-cylinder direct-injection spark-ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT and other high-load conditions to determine the knock-limited compression ratio (CR) of ethanol fuel blends. The geometric CR is varied by changing pistons, producing CR from 9.2 to 12.87.
2011-04-12
Journal Article
2011-01-0129
MIng Huo, Chia-Fon Lee
In this paper, experimental investigation on spray atomization and droplet dynamics inside a thermostatic expansion valve (TXV), a component commonly used in vehicle refrigeration system, was conducted. A needle and an orifice were copied from a commercial TXV and machined to be mounted inside a chamber with optical access so that the flow inside the TXV is simulated and visualized at the same time. The break-up and atomization of the refrigerant were documented near the downstream of the orifice under different feed conditions for two TXV with different geometry. A Phase Doppler Anemometry (PDA) system was used later to measure the size and velocity of atomized refrigerant droplets. The results showed that the droplet size variation along the radial direction is slightly decreased at near downstream and increased at farther downstream due to the coalescence.
2011-04-12
Journal Article
2011-01-0130
Darshan Gopalrao Pahinkar, Vivek Kumar
An analytical model, which takes care of thermal interactions of human body with surroundings via basic heat transfer modes like conduction, convection, radiation and evaporation, is compiled. The analytical model takes measurable inputs from surroundings and specific human parameters. Using these parameters a quick calculation entailing all heat transfer modes ensues in net heat exchange of human body with surroundings. Its magnitude and direction decides the qualitative indication of thermal comfort of concerned human being. The present model is scaled on actual human beings by noting the subjective assessment in comfortable as well as uncomfortable surroundings. As a part of validation, it is implemented in an actual Climatic Wind Tunnel Heater test, where temperatures and other parameters on different parts of the body are noted down and fed to the model as input. Output of the equation is then compared with the subjective assessment of human beings.
Viewing 1 to 30 of 1431

Filter

  • Range:
    to:
  • Year: