Criteria

Text:
Sector:
Topic:
Display:

Results

Viewing 1 to 30 of 33652
2010-10-25
Journal Article
2010-01-2161
Gareth Floweday
Homogeneous Charge Compression Ignition (HCCI) engine technology has been an area of rapidly increasing research interest for the past 15 years and appears poised for commercialisation through the efforts of international research institutions and manufacturers alike. In spite of significant worldwide research efforts on numerous aspects of this technology, the need still exists for accurate and computationally efficient fuel auto-ignition models capable of predicting the heat release dynamics of two-stage auto-ignition, especially for full boiling range fuels, sensitive to the effects of pressure, temperature, fuel equivalence ratio and inert dilution.
2010-10-25
Technical Paper
2010-01-2162
Patricia Anselmi, Julian Kashdan, Guillaume Bression, Edouard Ferrero-Lesur, Benoist Thirouard, Bruno Walter
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
2010-10-25
Journal Article
2010-01-2167
Derek Splitter, Rolf D. Reitz, Reed Hanson
Heavy-duty engine experiments were conducted to explore reactivity controlled compression ignition (RCCI) combustion through addition of the cetane improver di-tert-butyl peroxide (DTBP) to pump gasoline. Unlike previous diesel/gasoline dual-fuel operation of RCCI combustion, the present study investigates the feasibility of using a single fuel stock (gasoline) as the basis for both high reactivity and low reactivity fuels. The strategy consisted of port fuel injection of gasoline and direct injection of the same gasoline doped with a small volume percent addition of DTBP. With 1.75% DTBP by volume added to only the direct-injected fuel (which accounts for approximately 0.2% of the total fueling) it was found that the additized gasoline behaved similarly to diesel fuel, allowing for efficient RCCI combustion. The single fuel results with DTBP were compared to previous high-thermal efficiency, low-emissions results with port injection of gasoline and direct injections of diesel.
2010-10-25
Technical Paper
2010-01-2168
Vahid Hosseini, W Neill, Hongsheng Guo, Cosmin Emil Dumitrescu, Wallace Chippior, Craig Fairbridge, Ken Mitchell
The effects of cetane number, aromatics content and 90% distillation temperature (T90) on HCCI combustion were investigated using a fuel matrix designed by the Fuels for Advanced Combustion Engines (FACE) Working Group of the Coordinating Research Council (CRC). The experiments were conducted in a single-cylinder, variable compression ratio, Cooperative Fuel Research (CFR) engine. The fuels were atomized and partially vaporized in the intake manifold. The engine was operated at a relative air/fuel ratio of 1.2, 60% exhaust gas recirculation (EGR) and 900 rpm. The compression ratio was varied over the range of 9:1 to 15:1 to optimize the combustion phasing for each fuel, keeping other operating parameters constant. The results show that cetane number and T90 distillation temperature significantly affected the combustion phasing. Cetane number was clearly found to have the strongest effect.
2010-10-25
Journal Article
2010-01-2165
David Serrano, Olivier Laget, Dominique Soleri, Stephane Richard, Benoit Douailler, Frederic Ravet, Marc Moreau, Nathalie Dioc
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
2010-10-25
Journal Article
2010-01-2172
James P. Szybist, Eric Nafziger, Adam Weall
A spark-assist homogeneous charge compression ignition (SA-HCCI) operating strategy is presented here that allows for stoichiometric combustion from 1000-3000 rpm, and at loads as high as 750 kPa net IMEP. A single cylinder gasoline engine equipped with direct fuel injection and fully variable hydraulic valve actuation (HVA) is used for this experimental study. The HVA system enables negative valve overlap (NVO) valve timing for hot internal EGR. Spark-assist stabilizes combustion over a wide range of engine speeds and loads, and allows for stoichiometric operation at all conditions. Characteristics of both spark-ignited combustion and HCCI are present during the SA-HCCI operating mode, with combustion analysis showing a distinctive spark ignited phase of combustion, followed by a much more rapid HCCI combustion phase. At high load, the maximum cylinder pressure rise rate is controlled by a combination of spark timing and retarding the intake valve closing angle.
2010-10-25
Journal Article
2010-01-2169
Gareth Floweday
Homogeneous Charge Compression Ignition (HCCI) engine technology has been an area of rapidly increasing research interest for the past 15 years and appears poised for commercialisation through the efforts of international research institutions and manufacturers alike. In spite of significant worldwide research efforts on numerous aspects of this technology, the need still exists for accurate and computationally efficient fuel auto-ignition models capable of predicting the heat release dynamics of two-stage auto-ignition, especially for full boiling range fuels, sensitive to the effects of pressure, temperature, fuel equivalence ratio and inert dilution.
2010-10-25
Technical Paper
2010-01-2170
Hermann Obermair, Riccardo Scarcelli, Thomas Wallner
This paper reports on research activities aiming to improve the efficiency of direct injected, hydrogen powered internal combustion engines. In a recent major change in the experimental setup the hydrogen single cylinder research engine at Argonne National Laboratory was upgraded to a new engine geometry providing increased compression ratio and a longer piston stroke compared to its predecessor. The higher compression ratio and the more advantageous volume to surface ratio of the combustion chamber are both intended to improve the overall efficiency of the experimental setup. Additionally, a new series of faster acting, piezo-activated injectors is used with the new engine providing increased flexibility for the optimization of DI injection strategies. This study focuses on the comparison of experimental data of the baseline versus the improved single cylinder research engine for similar engine operating conditions.
2010-10-25
Technical Paper
2010-01-2175
Atsuhiro Kawamura, Yoshio Sato, Kaname Naganuma, Kimitaka Yamane, Yasuo Takagi
The planned development of a hydrogen ICE system for trucks is one of the technological candidates for air pollution reduction and global warming prevention for the large-sized (heavy-duty) trucks supporting Japanese freightage. This project is the first to develop a DISI multi-cylinder hydrogen ICE system aimed at combining high power output and low NOx generation.
2010-10-25
Journal Article
2010-01-2173
Shiro Tanno, Yasushi Ito, Ryo Michikawauchi, Mikio Nakamura, Hirokuni Tomita
Hydrogen can be produced from various renewable energy sources, therefore it is predicted that hydrogen could play a greater role in meeting society's energy needs in the mid- to long-term. Conventional hydrogen engines have some disadvantages: higher cooling loss results in low thermal efficiency and abnormal combustion (backfire, pre-ignition, higher burning velocity) limits high load operation. Direct injection is an effective solution to overcome these disadvantages, but combustion methods that enable both high efficiency and low NOx have yet to be studied in enough detail. In this research, high-efficiency and low-NOx hydrogen combustion was investigated using a prototype high-pressure hydrogen injector (maximum 30 MPa). Experiments were carried out with a 2.2-liter 4-cylinder diesel engine equipped with a centrally mounted hydrogen injector, a toroidal shape combustion chamber, and a spark plug in the glow plug position.
2010-10-25
Technical Paper
2010-01-2194
Douglas R. Martin, Edward Badillo
The Auto Industry is responding to the environment and energy conservation concerns by ramping up production of hybrid electric vehicles (HEV). As the initial hurdles of making the powertrain operate are overcome, challenges such as making the powertrain feel more refined and intuitive remain. This paper investigates one of the key parameters for delivering that refinement: engine RPM behavior. Ideal RPM behavior is explored and included in the design of a control system. System implications are examined with regard to the effect of engine RPM scheduling on Battery usage and vehicle responsiveness.
2010-10-25
Technical Paper
2010-01-2195
Yongzheng Sun, Xianjing Li, Jun Deng, Zongjie Hu, Liguang Li, Anzhi Yang, Wenkai Sun
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
2010-10-25
Journal Article
2010-01-2196
William P. Attard, Patrick Parsons
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition system results from the partially combusted (reacting) prechamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (HCCI) without the complex control drawbacks.
2010-10-25
Technical Paper
2010-01-2198
Vittorio Manente, Claes-Goeran Zander, Bengt Johansson, Per Tunestal, William Cannella
A Scania 13 1 engine modified for single cylinder operations was run using nine fuels in the boiling point range of gasoline, but very different octane number, together with PRF20 and MK1-diesel. The eleven fuels were tested in a load sweep between 5 and 26 bar gross IMEP at 1250 rpm and also at idle (2.5 bar IMEP, 600 rpm). The boost level was proportional to the load while the inlet temperature was held constant at 303 K. For each fuel the load sweep was terminated if the ignitibility limit was reached. A lower load limit of 15 and 10 bar gross IMEP was found with fuels having an octane number range of 93-100 and 80-89 respectively, while fuels with an octane number below 70 were able to run through the whole load range including idle. A careful selection of boost pressure and EGR in the previously specified load range allowed achieving a gross indicated efficiency between 52 and 55% while NOx ranged between 0.1 and 0.5 g/kWh.
2010-10-25
Technical Paper
2010-01-2199
Leslie Bromberg, Daniel Cohn
Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
2010-10-25
Technical Paper
2010-01-2202
Umut Uysal, Ozgen Akalin
A timing drive model was developed based on computer-aided simulation methods and used to calculate the contribution of each system component to the overall timing drive friction loss at various engine operating conditions. Combining the analytical results and statistical methods, an optimization study was performed to calculate the ideal system design parameters such as hydraulic tensioner spring force and flow rate, sprocket tooth profiles and circularity, and oil supply pressure. The simulation results revealed that while the plastic guide - timing chain friction is responsible for the most part of the frictional losses, the contribution of timing chain friction increases with increasing speed. It was found that the tensioner guide is the key element in the guiding system that causes friction losses. Furthermore, tensioner spring force and engine oil pressure were identified as major design parameters that influence the efficiency of the timing drive.
2010-10-25
Journal Article
2010-01-2204
Yue Ma, Ho Teng, Marina Thelliez
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
2010-10-25
Technical Paper
2010-01-2205
Thomas Edward Briggs, Robert Wagner, K. Dean Edwards, Scott Curran, Eric Nafziger
In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 45%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.
2010-10-25
Technical Paper
2010-01-2206
Scott Curran, Vitaly Prikhodko, Kukwon Cho, C. Scott Sluder, James Parks, Robert Wagner, Sage Kokjohn, Rolf D. Reitz
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
2010-10-25
Technical Paper
2010-01-2209
K. Dean Edwards, Robert Wagner, Thomas Briggs
Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
2010-10-25
Technical Paper
2010-01-2214
Xianjing Li, Liguang Li, Yongzheng Sun, Zongjie Hu, Jun Deng
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
2010-10-25
Technical Paper
2010-01-2213
Forrest Jehlik, Eric Rask, Martha Christenson
For this work, a methodology of modeling and predicting fuel consumption in a hybrid vehicle as a function of the engine operating temperature has been developed for cold ambient operation (-7°C, 266°K). This methodology requires two steps: 1) development of a temperature dependent engine brake specific fuel consumption (BSFC) map, and, 2) a data-fitting technique for predicting engine temperature to be used as an input to the temperature dependent BSFC maps. For the first step, response surface methodology (RSM) techniques were applied to generate brake specific fuel consumption (BSFC) maps as a function of the engine thermal state. For the second step, data fitting techniques were also used to fit a simplified lumped capacitance heat transfer model using several experimental datasets. Utilizing these techniques, an analysis of fuel consumption as a function of thermal state across a broad range of engine operating conditions is presented.
2010-10-25
Technical Paper
2010-01-2218
Alberto Boretti
Improvements of vehicle fuel economy are being considered using a mechanically driven flywheel to reduce the amount of mechanical energy produced by the thermal engine recovering the vehicle kinetic energy during braking. A mechanical system having an overall efficiency over a full regenerative cycle of about 70%, about twice the efficiency of battery-based hybrids, is coupled to a naturally aspirated gasoline engine powering a full size sedan. Results of chassis dynamometer experiments and engine and vehicle simulations are used to evaluate the fuel benefits introducing a kinetic energy recovery system and downsizing of the engine. Preliminary results running the new European driving cycle (NEDC) show KERS may reduce fuel consumption by 25% without downsizing, and 33% with downsizing of the 4 litre engine to 3.3 litres.
2010-10-25
Journal Article
2010-01-2223
Alessandro di Gaeta, Umberto Montanaro, Silvio Massimino, Carlos Ildefonso Hoyos Velasco
Nowadays, developing of effective camless engine systems, allowing Variable Valve Actuation (VVA), is one of the fundamental automotive challenge to increase engine power, reduce fuel consumption and pollutant emissions, as well as improve the engine efficiency significantly. Electromechanical devices based on double electromagnets have shown to be a promising solution to actuate engine valves during normal engine cycle due to their efficient working principle. Conversely, this solution requires special care at the key-on engine for the first valve lift, when the valve must be shifted from the middle equilibrium position to the closing one with limited coil currents and power requirements as well. Despite the central role of the first catching problem, few attempts have been done into the existing literature to tackle it systematically.
2010-10-25
Technical Paper
2010-01-2225
Alberto Boretti
Downsizing and Turbo Charging (TC) and Direct Injection (DI) may be combined with Variable Valve Actuation (VVA) to better deal with the challenges of fuel economy enhancement. VVA may control the load without throttle; control the valve directly and quickly; optimize combustion, produce large volumetric efficiency. Benefits lower fuel consumption, lower emissions and better performance and fun to drive. The paper presents an engine model of a 1.6 litre TDI VVA engine specifically designed to run pure ethanol, with computed engine maps for brake specific fuel consumption and efficiency. The paper also presents driving cycle results obtained with a vehicle model for a passenger car powered by this engine and a traditional naturally aspirated gasoline engine. Preliminary results of the VVA system coupled with downsizing, turbo charging and Direct Injection permits significant driving cycle fuel economies.
2010-10-25
Technical Paper
2010-01-2228
Alberto Boretti
Recovery of braking energy during driving cycles is the most effective option to improve fuel economy and reduce green house gas (GHG) emissions. Hybrid electric vehicles suffer the disadvantages of the four efficiency-reducing transformations in each regenerative braking cycle. Flywheel kinetic energy recovery systems (KERS) may boost this efficiency up to almost double values of about 70% avoiding all four of the efficiency-reducing transformations from one form of energy to another and keeping the vehicle's energy in the same form as when the vehicle starts braking when the vehicle is back up to speed. With reference to the baseline configuration with a 1.6 liters engine and no recovery of kinetic energy, introduction of KERS reduces the fuel usage to 3.16 liters per 100 km, corresponding to 82.4 g of CO₂ per km. The 1.6 liters Turbo Direct Injection (TDI) diesel engine without KERS uses 1.37 MJ per km of fuel energy, reducing with KERS to 1.13 MJ per km.
2010-09-28
Technical Paper
2010-32-0020
Paul Ravenhill, Jeffrey Allen, Benajmin Smither, Gavin Farmer, Eric Demesse, Philippe Grosch
The ideal attributes of light weight, low cost and high power density have made the 2-stroke engine unrivalled in the scooter and moped market for many years. However, the challenges of meeting new emissions regulations, especially the latest Euro III emission test cycle have reduced the 2-stroke's dominance and it is now often considered to be too dirty and inefficient to have a future. As a result its product placement is on the decline. This paper introduces and discusses the latest application of a low-cost high-frequency injection system (Pulse Count Injection [ 1 , 2 ]) to both the fuel flow and lubrication oil flow of a 2-stroke scooter; allowing both fluids to be individually mapped and optimised for the complete engine operating range. This in turn enables the 2-stroke engine to pass the latest Euro III test whilst improving the fuel economy by a considerable margin, without changing the architecture of the engine.
2010-09-28
Technical Paper
2010-32-0019
Roland Oswald, Andreas Ebner, Roland Kirchberger
The Institute of Internal Combustion Engines and Thermodynamics at Graz University of Technology has developed a low-pressure (5 bar) direct injection (LPDI) combustion system for 50 cm₃ two-stroke engines during the last years. The 50 cm₃ two-stroke engine is a specific European engine class. Worldwide the 125 cm₃ class is more important. In order to investigate the potential of higher displacement engines equipped with the LPDI combustion process, a demonstrator engine with 250 cm₃ has been developed. The results of this demonstrator from the engine test bench and from the chassis dynamometer are discussed to show the potential of this two-stroke technology. In order to ease the interpretation, the results of a homogenously scavenged two-stroke engine and of a naturally aspirated four-stroke engine serve as reference. The results show that the LPDI technology is a real alternative to expensive four-stroke engines.
2010-09-28
Technical Paper
2010-32-0018
Lei Tian
Miniature size internal combustion (IC) engines with displacements in the neighborhood of 1 cc have the potential to function as high power and energy density miniature power supplies. The engines, which are currently used in model airplanes, have higher power and longer run times than a battery coupled to an electric motor. The Center for Compact and Efficient Fluid Power (CCEFP), a seven university research consortium in the United States, is developing miniature IC engines for applications in human size mobile devices such as robots and medical assistive devices, aiming at more compact design and longer operation time. To advance the development of new compact power supplies, it is necessary to understand the performance characteristics of current miniature engines. As the scale of an engine gets smaller, surface effects such as friction, heat loss, and leakage get more significant [ 1 ].
2010-09-28
Technical Paper
2010-32-0017
Oliver Schoegl, Stephan Schmidt, Martin Abart, Christian Zinner, Roland Kirchberger, Mathias Fitl, Karl Glinsner, Stefan Leiber
The development process of 2-stroke engines is characterized by limited CFD investigations in combination with long-term development phases on the test bench with high prototype costs. To reduce the costs and to realize shorter development time together with a higher prediction quality of the engine potential, a higher implementation level of 1D and 3D simulation tools into the development process is necessary. This publication outlines the 1D simulation methods in the layout phase of GDI combustion processes of 2-stroke engine categories. By means of conceptual investigations, the demands, the potential and the limits of 1D CFD simulation methodology are defined. Using a comparison between 1D and 3D or 1D/3D coupled simulation methods the limits of solely 1D simulation are shown. For advanced simulation tasks with a higher demand for prediction quality, the entire engine is simulated in 1D, whereas special parts of the engine design are simulated in a 3D model.
Viewing 1 to 30 of 33652

Filter

  • Range:
    to:
  • Year: