Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Bump Steer and Brake Steer Optimization in Steering Linkages Through TAGUCHI Method DOE Analysis

2021-09-22
2021-26-0079
Due to recent infrastructural development and emerging competitive automotive markets, there is seen a huge shift in customer’s demand and vehicle drivability pattern in commercial vehicle industry. Now apart from ensuring better vehicle durability and best in class tyre life and fuel mileage, a vehicle manufacturer also has to focus on other key attributes like driver’s safety and ride comfort. Thus, for ensuring enhanced drivability, key parameters for ensuring better vehicle handling includes optimization of bump steer and brake steer. Both bump steer and brake steer are vehicle’s undesirable phenomenon where a driver is forced to constantly make steering wheel correction in order to safely maneuver the vehicle in the desired path.
Technical Paper

Experimental and Finite Elemental Analysis of Bogie Suspension Mounting Brackets

2013-11-27
2013-01-2789
In mining tippers, rear suspension plays a major role in defining vehicles ride and handling characteristics, stability and load carrying capacity. Bogie type of suspension is well suited for these applications. Bogie suspension mainly consists of bogie bracket, leaf springs and radius rods. Nonlinear static analysis is performed for a bogie bracket assembly considering bolt pretension and contacts to evaluate the static strength of bogie bracket. Since bogie bracket is connected to frame with several bolts, a sensitivity analysis is carried out to study the effect of bolt loosing on bogie bracket. The surface contact interaction (stick-slip) behavior between frame and bogie suspension mounting bracket is also studied. Good correlation is achieved with testing results.
Technical Paper

Driver Ergonomics in City Buses and Coaches

2014-09-30
2014-01-2424
Bus and coach drivers spend considerably more time in the vehicle, compared to an average personal car user. However, when it comes to comfort levels, the personal cars, even the inexpensive hatchbacks score much higher than a standard bus. This is because the amount of ergonomic design considerations that go into designing a car's DWS (driver workspace) is much more than that of buses. To understand this lacuna, the existing standards and recommendations pertaining directly or remotely to bus driver workspace were studied. It was understood, beyond certain elementary recommendations, there were very few standards available exclusively for buses. This paper ventures to establish a set of guidelines, exclusively for designing bus and coach driver workspace. The various systems in the driver's work space and their relevance to driver's ergonomics are discussed. References are drawn from different case studies and standards to come up with recommendations and guidelines.
X