Refine Your Search

Topic

Search Results

Viewing 1 to 8 of 8
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
Journal Article

Real World Duty Cycle Development Method for Non-road Mobile Machinery (NRMM)

2016-09-27
2016-01-8118
Emission, fuel economy and productivity in non-road mobile machinery (NRMM) depend largely on drive cycles. Understanding drive cycles can provide the in-depth information and knowledge that help the system integrator better optimize the vehicle management system. Some non-road engine test cycles already exist nowadays. However, these cycles are mainly for engine emission regulation purpose, and not closely tied to real world applications. Therefore, from both industries and academia, it has been the common practice to instrument and retrofit a vehicle, assign a professional driver operate the retrofitted vehicle for real testing, and compare the results to the baseline vehicle under the similar operating conditions. Obviously this approach is time consuming and resource intensive. In this paper, we attempt to address this issue by introducing a method of constructing standard drive cycles from in-field operation data.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Cold Spray Repair Process Optimization Through Development of Particle Impact Velocity Prediction Methodology

2022-10-05
2022-28-0098
Cold spray (CS) is a rapidly developing solid-state repair and coating process, wherein metal deposition is produced without significant heating or melting of metal powder. Solid state bonding of powder particles is produced by impact of high-velocity powder particles on a substrate. In CS process, metal powder particles typically of Aluminum or Copper are suspended in light weight carrier gas medium. Here high pressure and high temperature carrier gas is expanded through a converging-diverging nozzle to generate supersonic gas velocity at nozzle exit. The CS process typically uses Helium as the carrier gas due to its low molecular weight, but Helium gas is quite expensive. This warrants a need to explore alternate carrier gases to make the CS repair process more economical. Researchers are exploring another viable option of using pure Nitrogen as a carrier gas due to its significant cost benefits over Helium.
Technical Paper

Durability and Reliability Demonstration for Switching Roller Finger Follower in Cylinder Deactivation Systems

2015-09-29
2015-01-2816
Cylinder deactivation (CDA) is an effective method to adjust the engine displacement for maximum output and improve fuel economy by adjusting the number of active cylinders in combustion engines. A Switching Roller Finger Follower (SRFF) is an economic solution for CDA that minimizes changes and preserves the overall width, height, or length of Dual Overhead Cam (DOHC) engines. The CDA SRFF provides the flexibility of either transferring or suppressing the camshaft movement to the valves influencing the engine performance and fuel economy by reducing the pumping losses. This paper addresses the performance and durability of the CDA SRFF system to meet the reliability for gasoline passenger car engines. Extensive tests were conducted to demonstrate the dynamic stability at high engine speeds and the system capacity of switching between high and low engine displacement within one camshaft revolution.
Technical Paper

Analysis of Hybrid Heavy Duty Powertrains for Commercial Vehicles in the Face of Advanced Vehicle and Exhaust Energy Recovery Technologies

2014-04-01
2014-01-1808
New regulations, rising fuel costs and environmental concerns are driving significant improvement in heavy duty truck aerodynamics and rolling resistance that fundamentally change the power needs of heavy duty trucks. Furthermore, exhaust energy recovery technology is evolving and driving a change in the power management strategies. Together with advances in hybrid technology, these changes open the potential for a cost-effective line haul hybrid line of trucks. This paper will present a simulation study that was performed in order to evaluate the potential fuel economy benefits of a heavy duty powertrain for commercial vehicles. The architecture includes hybrid electric components paired with a waste heat recovery system. The electric energy can be used to reduce engine load during peak power requests. The sources for the electric energy are both braking energy regeneration as well as conversion of waste heat to electricity via a high speed generator.
Technical Paper

Mitigating Vibration for a Heavy-Duty Diesel Cylinder Deactivation Truck

2021-04-06
2021-01-0661
Commercial vehicles require fast aftertreatment heat up in order to move the selective catalyst reduction (SCR) into the most efficient temperature range to meet upcoming NOx regulations. Heavy duty cylinder deactivation (CDA) is an important technology to meet these regulations. One of the challenges with implementing CDA in the heavy-duty market is to ensure acceptable engine and vehicle vibration. The purpose of this paper is to mitigate CDA vibration on a vehicle to acceptable levels. Emphasis was placed at the idle operating condition. Idle is the most challenging operating mode to enable, as deactivating cylinders reduces the frequency of the forcing function due to engine firing, which leads to a need to isolate these lower frequencies. A focused modal analysis of the engine (source), frame (path), and cabin (path/receiver) was used to characterize the vehicle system.
Technical Paper

Supercharger Boosting on H2 ICE for Heavy Duty applications

2024-07-02
2024-01-3006
Commercial vehicle powertrain is called to respect a challenging roadmap for CO2 emissions reduction, quite complex to achieve just improving technologies currently on the market. In this perspective alternative solutions are gaining interest, and the use of green H2 as fuel for ICE is considered a high potential solution with fast and easy adoption. NOx emission is still a problem for H2 ICE and can be managed operating the engine with lean air fuel ratio all over the engine map. This combustion strategy will challenge the boosting system as lean H2 combustion will require quite higher air flow compared to diesel for the same power density in steady state. Similar problem will show up in transient response particularly when acceleration starts from low load and the exhaust gases enthalpy is very poor and insufficient to spin the turbine. The analysis presented in this paper will show and quantify the positive impact that a supercharger has on both the above mentions problems.
X