Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Effects of Charge Motion, Compression Ratio, and Dilution on a Medium Duty Natural Gas Single Cylinder Research Engine

2014-09-30
2014-01-2363
Recent advances in natural gas (NG) recovery technologies and availability have sparked a renewed interest in using NG as a fuel for commercial vehicles. NG can potentially provide both reduced operating cost and reductions in CO2 emissions. Commercial NG vehicles, depending on application and region, have different performance and fuel consumption targets and are subject to various emissions regulations. Therefore, different applications may require different combustion strategies to achieve specific targets and regulations. This paper summarizes an evaluation of combustion strategies and parameters available to meet these requirements while using NG in a spark ignited engine. A single-cylinder research engine using a modified diesel cylinder head was employed for this study. Both stoichiometric combustion with cooled exhaust gas recirculation (EGR) and lean-burn were evaluated.
Technical Paper

EGR and Swirl Distribution Analysis Using Coupled 1D-3D CFD Simulation for a Turbocharged Heavy Duty Diesel Engine

2011-09-13
2011-01-2222
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel and code named "Scorpion" was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. A high pressure Exhaust Gas Recirculation (EGR) layout in combination with a Variable Geometry Turbine (VGT) is used to deliver cooled EGR for in-cylinder NOx reduction. The cylinder-to-cylinder variation of EGR and swirl ratio is tightly controlled by the careful design of the EGR mixer and intake system flow path to reduce variability of cylinder-out PM and NOx emissions. 3D-CFD studies were used to quickly screen several EGR mixer designs based on mixing efficiency and pressure drop considerations. To optimize the intake system, 1D-3D co-simulation methodology with AVL-FIRE and AVL-BOOST has been used to assess the cylinder-to-cylinder EGR distribution and dynamic swirl.
Technical Paper

Automotive Electrical System in the New Millennium

1999-11-15
1999-01-3747
The automotive industry is investigating the change of electrical system voltage in a vehicle from the present 14 volt (12V battery) to 42 volt (36V battery) to integrate new electrical and electronic features. These new features require more amperes, thicker wires, large power devices, and eventually higher cost. The existing 14V system is very difficult to sustain so much content because of constraints of performance, efficiency, cost, packaging space, and manufacture-ability. This paper discusses foreseeable needs moving to a higher voltage, and reasons of 42V selection. It explores benefits and drawbacks when the voltage is changed from 14V to 42V in the areas of wire harness, power electronics, smart switching, power supply, etc. Finally, two typical 42/14V dual voltage architectures are presented for a likely 42V transition scenario.
Technical Paper

Analysis Lead Drivability Assessment

2015-09-29
2015-01-2804
Drivability and powertrain refinement continue to gain importance in the assessment of overall vehicle quality. This notion has transcended its light duty origins and is beginning to gain considerable traction in the medium and heavy duty markets. However, with drivability assessment and refinement also comes the high costs associated with vehicle testing, including items such as test facilities, prototype component evaluation, fuel and human resources. Taking all of this into account, any and all measures must be used to reduce the cost of drivability evaluation and powertrain refinement. This paper describes an analysis based co-simulation methodology, where sophisticated powertrain simulation and objective drivability evaluation tools can be used to predict vehicle drivability. A fast running GT power engine model combined with simplified controls representation in Matlab/Simulink was used to predict engine transients and responses.
Book

Variable Valvetrain System Technology

2006-03-14
This combination of 27 papers covers a decade of technical information reviewing the wide-range of approaches to Variable Valve Actuation (VVA). Each approach has unique benefits and a range of applications. These papers present a balanced view of the progress and challenges associated with VVA technology. Fuel economy and reduced emissions continue to be large factors in engine technology. Therefore the continued development of VVA will become necessary on virtually all gasoline engines, and must be adopted on diesel engines. The benefits achieved with the applications of this technology include: fuel economy, reduced emissions, improved power, performance, reliability and durability.
X