Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Heavy-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2775
This paper presents the fuel consumption results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to a long haul heavy duty vehicle. Based on the simulation modeling, up to 11% in fuel savings is possible using commercially available and emerging technologies applied to a 15L DD15 engine alone. The predicted fuel savings are up to 17% in a Kenworth T700 tractor-trailer unit equipped with a range of vehicle technologies, but using the baseline DD15 diesel engine. A combination of the most aggressive engine and vehicle technologies can provide savings of up to 29%, averaged over a range of drive cycles. Over 30% fuel savings were found with the most aggressive combination on a simulated long haul duty cycle. Note that not all of these technologies may prove to be cost-effective. The fuel savings benefits for individual technologies vary widely depending on the drive cycles and payload.
Journal Article

Analysis Process for Truck Fuel Efficiency Study

2015-09-29
2015-01-2778
Medium- and Heavy Duty Truck fuel consumption and the resulting greenhouse gas (GHG) emissions are significant contributors to overall U.S. GHG emissions. Forecasts of medium- and heavy-duty vehicle activity and fuel use predict increased use of freight transport will result in greatly increased GHG emissions in the coming decades. As a result, the National Highway Traffic Administration (NHTSA) and the United States Environmental Protection Agency (EPA) finalized a regulation requiring reductions in medium and heavy truck fuel consumption and GHGs beginning in 2014. The agencies are now proposing new regulations that will extend into the next decade, requiring additional fuel consumption and GHG emissions reductions. To support the development of future regulations, a research project was sponsored by NHTSA to look at technologies that could be used for compliance with future regulations.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
Journal Article

Development of a Structurally Optimized Heavy Duty Diesel Cylinder Head Design Capable of 250 Bar Peak Cylinder Pressure Operation

2011-09-13
2011-01-2232
Historically, heavy-duty diesel (HDD) engine designs have evolved along the path of increased power output, improved fuel efficiency and reduced exhaust gas emissions, driven both by regulatory and market requirements. The various technologies employed to achieve this evolution have resulted in ever-increasing engine operating cylinder pressures, higher than for any other class of internal combustion engine. Traditional HDD engine design architecture limits peak cylinder pressure (PCP) to about 200 bar (2900 psi). HDD PCP had steadily increased from the early 1970's until the mid 2000's, at which point the structural limit was reached using traditional methods and materials. Specific power output reversed its historical trend and fell at this time as a result of technologies employed to satisfy new emissions requirements, most notably exhaust gas recirculation (EGR).
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Technical Paper

Roadmap for Hybridization of Military Tactical Vehicles: How Can We Get There?

2002-11-18
2002-01-3048
The U.S. Army's National Automotive Center has contracted with Illinois Institute of Technology Research Institute (IITRI), Southwest Research Institute (SwRI), and Advanced Propulsion, LLC, to evaluate the effects on fuel consumption and logistics that would result from hybridizing the powertrains of the Army's tactical wheeled vehicle fleet. This paper will outline the approach taken to perform that evaluation and present a synopsis of results achieved to date.
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle Part II: Electromagnetic Immunity (EMI)

1992-09-01
921653
Electromagnetic immunity (EMI) for off-highway vehicles (OHV) is a vehicle's ability to resist radiated and conducted electromagnetic interference. Interference can originate within the OHV from the various systems designed to control its operational functions; external sources can also cause serious disruption of the electronic control mechanisms. Knowledge of how and where interferences originate gives the electronic designer insight into how to avoid the pitfalls which can cause malfunctions. Verification of designs through testing will ensure that safety and reliability are built into every OHV produced. This paper discusses the mechanisms that cause susceptibility of electronic circuits to electromagnetic interference, and presents test methods to help the designer improve circuit design and verify the immunity of the complete vehicle. This is the second in a series of papers on electromagnetic compatibility (EMC) in the off-highway vehicle.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle Part III: Electromagnetic Emissions (EME)

1992-09-01
921654
Electromagnetic emissions (EME) from vehicles and their effect on broadcast radio and television were studied as early as 1944. Their original effect was significantly reduced by the early 1960s. Today, ignition noise (broadband) and vehicular micro-processor-controlled system noise (narrowband) are interfering with Land Mobile (two-way) communication services and other devices such as computers. Two SAE test methods, J551 and J1816, are used to measure this EME. Under development are methods to measure conducted EME on vehicle signal wiring and power input leads. This paper discusses EME measurement methods, provides insight into the sources of EME problems, and gives information on the test instrumentation used to make these measurements. This paper is the third in a series of papers on electromagnetic compatibility (EMC) in the off-highway vehicle. The first paper was an overview of a complete EMC program with discussion of several important segments.
Technical Paper

Microcomputer Control System Design for a Tracked Amphibious Vehicle

1985-09-01
851490
A 14-ton tracked amphibious vehicle has been equipped with a hydrostatic drivetrain that consists of land drive and seaborne transmissions. The transmissions and the vehicle's engine are under microcomputer control. In addition, the microcomputer reads operator inputs and does operational checks of the vehicle's various subsystems. If arty of the subsystems is found to be degraded in their performance the microcomputer informs the operator. This paper presents an overview of the drivetrain systems and the implementation of the control and diagnostic systems.
Technical Paper

Application of a Commercially Available Process Control Computer to Engine Testing

1985-09-01
851577
This paper describes a distributed digital process control computer designed for large industrial processing plants that has been applied successfully to laboratory engine testing. Over the past two years several complete systems have been installed and adapted to control engines from 75 kW to over 1800 kW with various dynamometer/generator absorption devices. Control problems encountered, and solutions we have found, are discussed along with the wide range of capabilities this type of system can provide. A short comparison is made between distributed digital control systems and mini-computers, listing advantages and disadvantages of both.
Technical Paper

Probabilistic Structural Analysis Methods

1988-04-01
880784
The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the structural response. This paper provides an overview of the methodology and discusses validation of modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as stress, displacement, natural frequencies, buckling loads, transient responses, etc. The structural analysis solution is in terms of the cumulative distribution function (CDF). Probabilistic structural analysis methods (PSAM) can be used to estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior.
Technical Paper

Connected Commercial Vehicles

2016-09-27
2016-01-8009
While initial Connected Vehicle research in the United States was focusing almost exclusively on passenger vehicles, a program was envisioned that would enhance highway safety, mobility, and operational efficiencies through the application of the technology to commercial vehicles. This program was realized in 2009 by funding from the I-95 Corridor Coalition, led by the New York State Department of Transportation, and called the Commercial Vehicle Infrastructure Integration (CVII) program. The CVII program focuses on developing, testing and deploying Connected Vehicle technology for heavy vehicles. Since its inception, the CVII program has developed numerous Vehicle-to-Vehicle and Vehicle-to-Infrastructure applications for trucks that leverage communication with roadside infrastructure and other light and heavy duty vehicles to meet the objectives of the program.
Journal Article

Automated Driving Impediments

2016-09-27
2016-01-8007
Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
Technical Paper

Characterization of Particle Size Distribution of a Heavy-Duty Diesel Engine During FTP Transient Cycle Using ELPI

2000-06-19
2000-01-2001
Particle number concentrations and size distributions were measured for the diluted exhaust of a 1991 diesel engine during the US FTP transient cycle for heavy-duty diesel engines. The engine was operated on US 2-D on-highway diesel fuel. The particle measurement system consisted of a full flow dilution tunnel as the primary dilution stage, an air ejector pump as the secondary dilution stage, and an electrical low pressure impactor (ELPI) for particle size distribution measurements. Particle number emission rate was the highest during the Los Angeles Non Freeway (LANF) and the Los Angeles Freeway (LAF) segments of the transient cycle. However, on brake specific number basis the LAF had the lowest emission level. The particle size distribution was monomodal in shape with a mode between 0.084 μm and 0.14 μm. The shape of the size distribution suggested no presence of nanoparticles below the lower detection limit of the instrument (0.032 μm), except during engine idle.
Technical Paper

An Update on Continuing Progress Towards Heavy-Duty Low NOX and CO2 in 2027 and Beyond

2023-04-11
2023-01-0357
Despite considerable progress towards clean air in previous decades, parts of the United States continue to struggle with the challenge of meeting the ambient air quality targets for smog-forming ozone mandated by the U.S. EPA, with some of the most significant challenges being seen in California. These continuing issues have highlighted the need for further reductions in emissions of NOX, which is a precursor for ozone formation, from a number of key sectors including the commercial vehicle sector. In response, the California Air Resources Board (CARB) embarked on a regulatory effort culminating in the adoption of the California Heavy-Duty Low NOX Omnibus regulation.[1] This regulatory effort was supported by a series of technical programs conducted at Southwest Research Institute (SwRI).
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
X