Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Optimal Preview Controller for Active Trailer Steering Systems of Articulated Heavy Vehicles

2011-04-12
2011-01-0983
An optimal preview controller is designed for active trailer steering (ATS) systems to improve high-speed stability of articulated heavy vehicles (AHVs). AHVs' unstable motion modes, including jack-knifing and rollover, are the leading course of highway accidents. To prevent these unstable motion modes, the optimal controller, namely the compound lateral position deviation preview (CLPDP) controller, is proposed to control the steering of the front and rear axle wheels of the trailing unit of a truck/full-trailer combination. The corrective steering angle of the trailer front axle wheels is determined using the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. In turn, the steering angle of the trailer rear axle wheels is calculated considering the lateral position deviation of the trajectory of the axle center from that of the trailer front axle.
Technical Paper

Phase-Plane Analysis for Evaluating the Lateral Stability of Articulated Vehicles

2015-04-14
2015-01-1574
The phase-plane analysis technique has become a powerful tool for analyzing lateral stability of single-unit vehicles. Articulated vehicles, such as car-trailer combinations, consist of multiple vehicle units. Multi-unit vehicles exhibit unique dynamic features compared against single-unit vehicles. For example, a car-trailer may exhibit one of the three unstable motion modes, i.e., jack-knifing, trailer sway and rollover. Considering the distinguished configurations and dynamic features of articulated vehicles, it is questionable whether the phase-plane analysis method based on single-unit vehicles is applicable for analyzing the lateral stability of multi-unit vehicles. In order to address the problem, case studies are conducted to test the effectiveness of the phase-plane method for analyzing the lateral stability of a car-trailer combination, which is represented by a nonlinear vehicle model generated using the CarSim software package.
X