Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Particle oxidation catalyst in light duty and heavy duty diesel applications

2007-09-16
2007-24-0093
The effect of a novel particle oxidation catalyst (POC®) on diesel particle emissions is studied in heavy duty and light duty applications. Regulated particulate matter (PM) emission measurement is followed by analyzing either soluble organic fraction (SOF) or volatile organic (VOF) fraction. In addition, in heavy duty diesel application, size distributions are measured. Results show that PM reductions as high as 48-79% can be achieved when using POC in combination with a conventional diesel oxidation catalyst (DOC). As expected, the volatile fraction of the PM was very effectively reduced, but also the non-volatile fraction (i.e. soot) was reduced. In tested steady state driving modes soot reduction was found to be 31-55%.
Technical Paper

Emission performance of paraffinic HVO diesel fuel in heavy duty vehicles

2011-08-30
2011-01-1966
When switching from regular diesel fuel (sulfur free) to paraffinic hydrotreated vegetable oil (HVO), the changes in fuel chemistry and physical properties will affect emission characteristics in a very positive way. The effects also depend on the technology, after-treatment and sophistication of the engine. To determine the real effects in the case of city buses, 17 typical buses, representing emission classes from Euro II to EEV, were measured with HVO, regular diesel and several blended fuels. The average reduction was 10% for nitrogen oxides (NOx) and 30% for particulate matter (PM). Also some engine tests were performed to demonstrate the potential for additional performance benefits when fuel injection timing was optimized for HVO.
Technical Paper

Bus Fleet Operation on Renewable Paraffinic Diesel Fuel

2011-08-30
2011-01-1965
Helsinki Region Transport, Neste Oil, Proventia Emission Control and VTT Technical Research Centre of Finland carried out a 3.5 year PPP venture “OPTIBIO” to demonstrate the use of paraffinic renewable diesel (hydrotreated vegetable oil HVO) in city buses. The fleet test in Metropolitan Helsinki involving some 300 buses is the largest one in the world to demonstrate this new fuel. The fuels were a 30 % blend of renewable diesel and 100 % renewable diesel. This paper describes the overall set-up of the project, gives an overview of the emission results as well as presents experience from the field.
Technical Paper

Comparison of Diesel and Natural Gas Bus Performance

2014-09-30
2014-01-2432
Over the years, natural gas has been promoted as a clean-burning fuel, especially for transit buses. A decade ago one could claim that natural gas buses deliver significant emission benefits over diesel buses, especially regarding particulate emissions. The spread in nitrogen oxide emissions has always been significant for natural gas engines, high for lean-burn engines and low for three-way catalyst equipped stoichiometric engines. With the introduction of US 2010 and Euro VI (effective as of 2014) exhaust emission regulations, independent of the fuel, the regulated emissions of all engines have been brought close to zero level. This means that the advantage of natural gas as a clean fuel is diminishing, especially in a situation in which electric transit buses are also entering the market. The motivation to use natural gas could still be diesel fuel substitution and to some extent, also reduction of greenhouse gas emissions.
X