Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Fault-Tolerant Control for 4WID/4WIS Electric Vehicle Based on EKF and SMC

2015-09-29
2015-01-2846
This paper presents a fault-tolerant control (FTC) algorithm for four-wheel independently driven and steered (4WID/4WIS) electric vehicle. The Extended Kalman Filter (EKF) algorithm is utilized in the fault detection (FD) module so as to estimate the in-wheel motor parameters, which could detect parameter variations caused by in-wheel motor fault. A motion controller based on sliding mode control (SMC) is able to compute the generalized forces/moments to follow the desired vehicle motion. By considering the tire adhesive limits, a reconfigurable control allocator optimally distributes the generalized forces/moments among healthy actuators so as to minimize the tire workloads once the actuator fault is detected. An actuator controller calculates the driving torques of the in-wheel motors and steering angles of the wheels in order to finally achieve the distributed tire forces. If one or more in-wheel motors lose efficacy, the FD module diagnoses the actuator failures first.
Technical Paper

An Integrated Control Strategy Towards Improvement of Vehicle Ride and Handling via Active Suspension

2011-09-13
2011-01-2161
An integrated control strategy for vehicle active suspension system which combines linear quadratic optimum control law with fuzzy control algorithm is designed to improve both ride and handling. The performance of this control strategy is then examined and assessed in an open-loop J-turn driving scenario on a random-rough road by means of computer simulation. Comparisons to a passive suspension system in terms of vehicle sprung mass vertical acceleration, body roll angle and yaw rate is conducted. Simulation results indicate that the integrated control strategy proposed in this paper could effectively enhance vehicle ride comfort meanwhile benefit handling quality and driving safety.
Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

Development and Verification of Electronic Braking System ECU Software for Commercial Vehicle

2013-11-27
2013-01-2736
Electronic braking system (EBS) of commercial vehicle is developed from ABS to enhance the brake performance. Based on the early development of controller hardware, this paper starts with an analysis of the definition of EBS. It aims at the software design of electronic control unit, and makes it compiled into the controller in the form of C language by the in-depth study about control strategy of EBS in different braking conditions. Designed controller software is divided into two layers. The upper control strategy includes the recognition algorithm of driver's braking intention, estimation algorithm of the vehicle state, conventional braking strategy which consists of the algorithm of deceleration control and braking force distribution, and emergency braking strategy which consists of the algorithm of brake assist control and ABS control.
Technical Paper

Study on Automated Mechanical Transmission and Method of Parameter Optimization Design for Hybrid Electric Bus

2013-11-27
2013-01-2828
The hybrid electric city bus, which consists of the electric motor and battery, is obviously different from the traditional buses. This paper focuses on optimizing the characteristics of the automatic mechanical transmission in hybrid electric city bus and does the following studies: firstly, in order to reduce the fuel consumption, the transmission ratio and some structural parameters are optimized with CRUISE software; secondly, the volume and weight of the transmission structure is reduced and optimized by numerical optimization approach, with the limitation of the structural reliability.
Technical Paper

Research on an AKF Estimator of the Gravity Centre and States of Commercial Vehicles

2013-11-27
2013-01-2818
The commercial vehicle is widely used in the overland transport. A prediction is given on the 9th annual China automotive industry forum that the number of the global commercial vehicles will reach eight million by the year of 2016. However, since the distance between its gravity centre and the ground is larger than that of the passenger vehicle, considering its comparatively short wheelbase, the rollover accident, which is fatal to the drivers and always makes enormous loss of merchandises, easily occurs in the case of commercial vehicles. As the number of the commercial vehicle is increasing fast, the accidents will occur more frequently, the losses will be increasingly enormous. To solve the problem, many researches about rollover early warning systems have been done. In most cases, it is assumed that the references of the vehicle are given.
Technical Paper

Research on Characteristics of Proportional Relay Valve for Commercial Vehicle Pneumatic EBS

2013-11-27
2013-01-2795
The simulation of electro-pneumatic components used in brake systems of commercial vehicles is of great importance in order to understand their characteristics for developing a control logic and improve the braking performance. As the goal of improving the performance of the commercial vehicle pneumatic EBS(Electronically controlled Braking System), static and dynamic characteristics of proportional relay valve for commercial vehicle pneumatic EBS have been simulated by using MATLAB/Simulink environment and validated by testing on hardware-in-the-loop test bench focused on its pressure hysteresis characteristic. The simulation and test results show that the mathematic model for proportional relay valve characteristics is reasonable and reliable, and this simulation tool can be used for research and developing of pneumatic EBS system for commercial vehicle effectively.
Technical Paper

Parameters Identification for Simplified Model of Articulated Heavy Vehicles

2013-11-27
2013-01-2896
In order to accurately characterize the dynamic characteristics of articulated heavy vehicles, 3-dof (degree of freedom) model and 5-dof simplified model of articulated heavy vehicle are established and key parameters of models are identified by the method which is to combine double models with genetic algorithm and by using Trucksim data. Simulation study, which combines 5-dof simplified model with the MAPs of key identified parameters, is carried out. Comparison, which is between simulation results and Trucksim data, indicates that the key parameters of simplified model can be accurately identified, the MAPs of key identified parameters can satisfy the demand of characterizing the actual state of vehicle and lay a foundation for vehicle stability control.
Technical Paper

An Over-Temperature Protection Control Strategy for Electric Power Steering Motor

2012-09-24
2012-01-2057
The EPS motor will be over-heated if large current lasts for a long time, which will decline the performance of EPS motor and even lead to irreparable damage. So the over-temperature protection control should be conducted in order to protect the components of EPS system, especially the durability of EPS motor. In this paper, the motor temperature was estimated according to the environmental temperature and the current of motor armature, and then the EPS assist current was limited based on the estimated temperature of motor to ensure that the EPS motor had a good working condition. So the over-temperature protection control for motor can be realized without increasing the EPS system components. Finally the control strategy for over-temperature protection was conducted in a vehicle with EPS system and its performance was verified.
Technical Paper

Integrated HIL Test and Development System for Pneumatic ABS/EBS ECU of Commercial Vehicles

2012-09-24
2012-01-2031
The quality of the brake system is a significant safety factor in commercial vehicles on the roads. With the development of automobile technology, the single function ABS system didn't meet active safety requirements of the user. The Electronically Controlled Brake System (EBS) system will replace the ABS system to become the standard safety equipment of commercial vehicles in the near future. EBS can be said an enhanced ABS system, it contains load sensor, brake valve sensor and pressure sensor of chamber, etc, and it is more advantages than ABS. This paper describes a flexible integrated test bench for ABS/EBS Electronic Control Unit (ECU) based on Hardware-In-the-Loop (HIL) simulation technique. It consists of most commercial vehicle pneumatic braking system components (from brake pedal valve, brake caliper to brake chambers), and uses the dSPACE real-time simulation system to communicate to the hardware I/O interface.
Technical Paper

Study on Braking Force Distribution Algorithm for Hybrid Electric Bus Based on EBS

2013-04-08
2013-01-0411
In order to improve the braking energy recovery, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established by co-simulation platform for the TruckSim and Matlab/Simulink in this paper. EBS makes the front and rear shaft braking force arbitrarily distributed, which is more effective to improve the rate of energy recovery and the braking stability. A braking force distribution algorithm for hybrid electric bus based on EBS was designed in this paper. Under the premise to meet the driver's needs and the ECE regulations, this braking force distribution method focuses on making the braking force distribute to the drive shaft to a maximum extent, so as to obtain the maximum energy recovery rate by the utilization of the motor regenerative braking. At last, the simulation in different operating conditions was used to analyze the braking energy utilization and the braking performance based on the simulation model.
Technical Paper

Mass Estimation and Axle Load Distribution Algorithm for EBS of Large Bus

2013-04-08
2013-01-0417
The paper describes an algorithm, which estimates the mass of large buses and axle load distribution using pedal position, wheel speed and the wheel cylinder pressure sensors. This algorithm is allowed to achieve the purpose without additional sensors by using the rotational speed sensors from ABS system and air pressure sensors in brake cylinders form ESP system. The axle load distribution algorithm mainly consists of three steps. Firstly, deceleration of the bus is estimated and then the mass of the bus is estimated. After that, the position of the mass centre is estimated. Taking account of the tire nonlinear characteristics under longitudinal forces and vertical forces, mass estimation, deceleration and the position of the mass centre of buses is corrected by the coefficient, which is determined by the wheel cylinder pressure, the wheel speed and mass estimation.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

2014-09-30
2014-01-2291
A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Technical Paper

Development and Research on Control Strategy of Advanced Electronic Braking Systems for Commercial Vehicle

2014-09-30
2014-01-2285
Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time.
Technical Paper

Assistance Characteristics and Control Strategy of Electro-Hydraulic Power Steering Systems on Commercial Vehicles

2015-09-29
2015-01-2723
Electro-hydraulic power steering system (EHPS) maintains the advantages of Hydraulic power steering system (HPS) and Electric power steering system (EPS).It is even more superior than this two. In the foreseeable future, this system will have a certain development space. Assistant characters analysis was carried out in this paper. Control strategy based on steering states and feedback control strategy were designed too. Besides, aiming at the emergency steering conditions, steering angular velocity additional controlling strategy was brought out. Under emergency steering conditions, steering angular velocity additional controlling strategy will be applied. Additional steering moment will be calculated to ensure the assistant follow steering rapidly.
Technical Paper

Research on Vehicle Height Adjustment Control of Electronically Controlled Air Suspension

2015-09-29
2015-01-2750
Electronically controlled air suspension (ECAS) systems have been widely used in commercial vehicles to improve the ride comfort and handling stability of vehicles, as it can adjust vehicle height according to the driving conditions and the driver's intent. In this paper, the vehicle height adjustment process of ECAS system is studied. A mathematical model of vehicle height adjustment is derived by combining vehicle dynamics theory and thermodynamics theory of variable mass system. Reasons lead to the problems of “over-charging”, “over-discharging” and oscillation during the process of height adjustment are analyzed. In order to solve these problems, a single neuron proportional-integral-derivative (PID) controller is proposed to realize the accurate control of vehicle height. By simulation and semi-physical rig test, the effectiveness and performance of the proposed control algorithm are verified.
Technical Paper

Driving and Steering Coordination Control for 4WID/4WIS Electric Vehicle

2015-09-29
2015-01-2762
This paper presents an integrated chassis controller with multiple hierarchical layers for 4WID/4WIS electric vehicle. The proposed systematic design consists of the following four parts: 1) a reference model is in the driver control layer, which maps the relationship between the driver's inputs and the desired vehicle motion. 2) a sliding mode controller is in the vehicle motion control layer, whose objective is to keep the vehicle following the desired motion commands generated in the driver control layer. 3) By considering the tire adhesive limits, a tire force allocator is in the control allocation layer, which optimally distributes the generalized forces/moments to the four wheels so as to minimize the tire workloads during normal driving. 4) an actuator controller is in the executive layer, which calculates the driving torques of the in-wheel motors and steering angles of the four wheels in order to finally achieve the distributed tire forces.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Vehicle Mass Estimation for Heavy Duty Vehicle

2015-09-29
2015-01-2742
Aiming at estimating the vehicle mass and the position of center of gravity, an on-line two-stage estimator, based on the recursive least square method, is proposed for buses in this paper. Accurate information of the center of gravity position is crucial to vehicle control, especially for buses whose center of gravity position can be varied substantially because of the payload onboard. Considering that the buses start and stop frequently, the first stage of the estimator determines the bus total mass during acceleration, and the second stage utilizes the recursive least-square methods to estimate the position of the center of gravity during braking. The proposed estimator can be validated by the co-simulation with MATLAB/Simulink and TruckSim software, simulation results exhibit good convergence and stability, so the center of gravity position can be estimated through the proposed method in a certain accuracy range.
Journal Article

Based on the Unscented Kalman Filter to Estimate the State of Four-Wheel-Independent Electric Vehicle with X-by-Wire

2015-09-29
2015-01-2731
As a new form of electric vehicle, Four-wheel-independent electric vehicle with X-By-Wire (XBW) inherits all the advantages of in-wheel motor drive electric vehicles. The vehicle steering system is liberated from traditional mechanical steering mechanism and forms an advanced vehicle with all- wheel independent driving, braking and steering. Compared with conventional vehicles, it has more controllable degrees of freedom. The design of the integrated vehicle dynamics control systems helps to achieve the steering, driving and braking coordinated control and improves the vehicle's handling stability. In order to solve the problem of lacking of vehicle state information in the integrated control, some methods are used to estimate the vehicle state of four-wheel-independent electric vehicles with XBW. In order to improve the estimation accuracy, unscented Kalman filter (UKF) is used to estimate the vehicle state variables in this paper.
X