Refine Your Search

Topic

Search Results

Journal Article

Trailer Technologies for Increased Heavy-Duty Vehicle Efficiency: Technical, Market, and Policy Considerations

2014-04-01
2014-01-1622
This paper reviews fuel-saving technologies for commercial trailers, provides an overview of the trailer market in the U.S., and explores options for policy measures at the federal level that can promote the development and deployment of trailers with improved efficiency. For trailer aerodynamics, there are many technologies that exist and are in development to target each of the three primary areas where drag occurs: 1) the tractor-trailer gap, 2) the side and underbody of the trailer, and 3) the rear end of the trailer. In addition, there are tire technologies and weight reduction opportunities for trailers, which can lead to reduced rolling resistance and inertial loss. As with the commercial vehicle sector, the trailer market is diverse, and there are a variety of sizes and configurations that are employed to meet a wide range of freight demands.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Emissions Testing of a Hybrid Fuel Cell Bus

1998-02-23
980680
The fuel cell bus program at Georgetown University (GU) has directed the operational development and testing of three hybrid fuel cell powered buses for transit operation. These are the world's first liquid-fueled, fuel cell powered road vehicles. This paper describes the emissions testing of one of these buses on a heavy duty chassis dynamometer at West Virginia University (WVU). The tested bus was driven by a 120 kW DC motor and utilized a 50 kW phosphoric acid fuel cell (PAFC) as an energy source with a 100 kW battery for supplemental power. A methanol/water fuel mixture was converted by a steam reformer to a hydrogen rich gas mixture for use in a fuel cell stack. Emissions from the reformer, fuel cell stack and startup burner were monitored for both transient and steady-state operation.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Models for Predicting Transient Heavy Duty Vehicle Emissions

1998-10-19
982652
Heavy duty engine emissions represent a significant portion of the mobile source emissions inventory, especially with respect to oxides of nitrogen (NOx) emissions. West Virginia University (WVU) has developed an extensive database of continuous transient gaseous emission levels from a wide range of heavy duty diesel vehicles in field operation. This database was built using the WVU Transportable Heavy Duty Vehicle Emission Testing Laboratories. Transient driving cycles used to generate the continuous data were the Central Business District cycle (CBD), 5-peak WVU test cycle, WVU 5-mile route, and the New York City Bus cycle (NYCB). This paper discusses continuous emissions data from a transit bus and a tractor truck, each of them powered by a Detroit Diesel 6V-92 engine. Simple correlational models were developed to relate instantaneous emissions to instantaneous power at the drivewheels.
Technical Paper

Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle

2003-10-27
2003-01-3284
The California Air Resources Board (ARB) developed a Medium Heavy-Duty Truck (MHDT) schedule by selecting and joining microtrips from real-world MHDT. The MHDT consisted of three modes; namely, a Lower Speed Transient, a Higher Speed Transient, and a Cruise mode. The maximum speeds of these modes were 28.9, 58.2 and 66.0 mph, respectively. Each mode represented statistically selected truck behavior patterns in California. The MHDT is intended to be applied to emissions characterization of trucks (14,001 to 33,000lb gross vehicle weight) exercised on a chassis dynamometer. This paper presents the creation of the MHDT and an examination of repeatability of emissions data from MHDT driven through this schedule. Two trucks were procured to acquire data using the MHDT schedule. The first, a GMC truck with an 8.2-liter Isuzu engine and a standard transmission, was tested at laden weight (90% GVW, 17,550lb) and at unladen weight (50% GVW, 9,750lb).
Technical Paper

Operating Envelopes of Hybrid Bus Engines

2001-09-24
2001-01-3537
Recent chassis testing of hybrid buses demonstrated the potential of hybrid technology to reduce emissions and raise fuel economy relative to conventional buses. However, hybrid buses represent a certification quandary because the engines must be certified using the accepted Federal Test Procedure (FTP), without regard for benefits that may arise from less transient engine operation. Actual engine operating data from series configuration hybrid buses were analyzed to determine the envelopes of torque and speeds covered by the engine. Transient engine operation was also considered in terms of rates of change of torque, power and speed. These measures did not compare closely with similar measures computed from the FTP because the series hybrid engines explored a more structured zone of operation than the FTP implied and because the FTP represented more transient operation.
Technical Paper

Measurement of Brake-specific NOX Emissions using Zirconia Sensors for In-use, On-board Heavy-duty Vehicle Applications

2002-05-06
2002-01-1755
Emissions tests for heavy -duty diesel-fueled engines and vehicles are normally performed using engine dynamometers and chassis dynamometers, respectively, with laboratory grade gaseous concentration measurement analyzers and supporting test equipment. However, a considerable effort has been recently expended on developing in-use, on-board tools to measure brake-specific emissions from heavy -duty vehicles with the highest degree of accuracy and precision. This alternative testing methodology would supplement the emissions data that is collected from engine and chassis dynamometer tests. The on-board emissions testing methodology entails actively recording emissions and vehicle operating parameters (engine speed and load, vehicle speed etc.) from vehicles while they are operating on the road. This paper focuses on in-use measurements of NOX with zirconium oxide sensors and other portable NOX detectors.
Technical Paper

Development and Initial Use of a Heavy-Duty Diesel Truck Test Schedule for Emissions Characterization

2002-05-06
2002-01-1753
In characterizing the emissions from mobile sources, it is essential that the vehicle be exercised in a way that reasonably represents typical in-use behavior. A heavy-heavy duty diesel truck (HHDDT) test schedule was developed from speed-time data gathered during two Air Resources Board-sponsored truck activity programs. The data were divided into four modes, termed Idle, Creep, Transient and Cruise Modes, in order of increasing speed. For the last three modes, speed-time schedules were created that represented all the data in that mode. Statistical parameters such as average speed, stops per unit distance, kinetic energy, maximum speed and acceleration and deceleration values were considered in arriving at these schedules. The schedules were evaluated using two Class 8 over-the-road tractors on a chassis dynamometer. Emissions were measured using a full-scale dilution tunnel, filtration for particulate matter (PM), and research grade analyzers for the gases.
Technical Paper

Evaluation of Methods for Determining Continuous Particulate Matter from Transient Testing of Heavy-Duty Diesel Engines

2001-09-24
2001-01-3575
The historical lack of continuous data for PM emissions from heavy-duty diesel engines hampers advanced inventory approaches and hampers second-by-second engine control optimization. Continuos PM data can be obtained using a Tapered Element Oscillating Microbalance (TEOM), but moisture correction of data is needed to remove unwanted transient components of the mass. Reasonable correlation can be found between TEOM data integrated over the cycle and conventional PM filter data. Considerable scatter was evident when continuous TEOM data were plotted against instantaneous power, but by dispersing the power in time a clearer relationship was evident. Continuous TEOM data showed the same gross trends as PM filter mass distributed over a cycle in proportion to instantaneous CO, but it was evident that this CO proportioning technique is at best approximate. Binning of PM mass rate as a function of vehicle speed and acceleration were also evaluated for inventory purposes.
Technical Paper

Relationships Between Instantaneous and Measured Emissions in Heavy Duty Applications

2001-09-24
2001-01-3536
Selective Catalytic Reduction (SCR), using urea injection, is being examined as a method for substantial reduction of oxides of nitrogen (NOx) for diesel engines, but the urea injection rates must be controlled to match the NOx production which may need to be predicted during open loop control. Unfortunately NOx is usually measured in the laboratory using a full-scale dilution tunnel and chemiluminescent analyzer, which cause delay and diffusion (in time) of the true manifold NOx concentration. Similarly, delay and diffusion of measurements of all emissions cause the task of creating instantaneous emissions models for vehicle simulations more difficult. Data were obtained to relate injections of carbon dioxide (CO2) into a tunnel with analyzer measurements. The analyzer response was found to match a gamma distribution of the input pulse, so that the analyzer output could be modeled from the tunnel CO2 input.
Technical Paper

Emissions Modeling of Heavy-Duty Conventional and Hybrid Electric Vehicles

2001-09-24
2001-01-3675
Today's computer-based vehicle operation simulators use engine speed, engine torque, and lookup tables to predict emissions during a driving simulation [1]. This approach is used primarily for light and medium-duty vehicles, with large discrepancies inherently due to the lack of transient engine emissions data and inaccurate emissions prediction methods [2]. West Virginia University (WVU) has developed an artificial neural network (ANN) based emissions model for incorporation into the ADvanced VehIcle SimulatOR (ADVISOR) software package developed by the National Renewable Energy Laboratory (NREL). Transient engine dynamometer tests were conducted to obtain training data for the ANN. The ANN was trained to predict carbon dioxide (CO2) and oxides of nitrogen (NOx) emissions based on engine speed, torque, and their representative first and second derivatives over various time ranges.
Technical Paper

Emissions from Diesel-Fueled Heavy-Duty Vehicles in Southern California

2003-05-19
2003-01-1901
Few real-world data exist to describe the contribution of diesel vehicles to the emissions inventory, although it is widely acknowledged that diesel vehicles are a significant contributor to oxides of nitrogen (NOx) and particulate matter (PM) in Southern California. New data were acquired during the Gasoline/Diesel PM Split Study, designed to collect emissions data for source profiling of PM emissions from diesel- and gasoline-powered engines in the South Coast (Los Angeles) Air Basin in 2001. Regulated gases, PM and carbon dioxide (CO2) were measured from 34 diesel vehicles operating in the Southern California area. Two were transit buses, 16 were trucks over 33,000 lbs. in weight, 8 were 14,001 lbs. to 33,000 lbs. in weight and 8 were under 14,001 lbs. in weight. The vehicles were also grouped by model year for recruiting and data analysis.
Technical Paper

Analysis of Torsional Vibration for a Multi-Branch Drive-Train in a Chassis Dynamometer

1991-11-01
912699
Due to the rapid development in advanced complex machinery, the analysis of torsional vibrations for multi-junction, multi-branch systems is becoming a subject of increasing interest. Torsional vibration may occur within an operation range in a rotating system and cause a serious failure in the machine. This is the case when an excitating frequency gets close to the natural frequency of the system. In this paper, an efficient and accurate method has been developed to calculate torsional natural frequencies of complex rotating systems. The method is used in designing a drive-train of a chassis dynamometer simulating a multi-junction, multi-branch rotating system. Natural frequencies and mode shapes of the drive-train have been determined and used for further development in the components of the system.
Technical Paper

Determination of Heavy-Duty Vehicle Energy Consumption by a Chassis Dynamometer

1992-11-01
922435
The federal emission standards for heavy duty vehicle engines require the exhaust emissions to be measured and calculated in unit form as grams per break horse-power-hour (g/bhp-hr). Correct emission results not only depend on the precise emission measurement but also rely on the correct determination of vehicle energy consumption. A Transportable Heavy-Duty Vehicle Emission Testing Laboratory (THDVETL) designed and constructed at West Virginia University provides accurate vehicle emissions measurements in grams over a test cycle. This paper contributes a method for measuring the energy consumption (bhp-hr) over the test cycle by a chassis dynamometer. Comparisons of analytical and experimental results show that an acceptable agreement is reached and that the THDVETL provides accurate responses as the vehicle is operated under transient loads and speeds. This testing laboratory will have particular value in comparing the behavior of vehicles operating on alternative fuels.
Technical Paper

Emissions Comparisons of Twenty-Six Heavy-Duty Vehicles Operated on Conventional and Alternative Fuels

1993-11-01
932952
Gaseous and particulate emissions from heavy-duty vehicles are affected by fuel types, vehicle/engine parameters, driving characteristics, and environmental conditions. Transient chassis tests were conducted on twenty-six heavy-duty vehicles fueled with methanol, compressed natural gas (CNG), #1 diesel, and #2 diesel, using West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory. The vehicles were operated on the central business district (CBD) testing cycle, and regulated emissions of carbon monoxide (CO), total hydrocarbon (HC), nitrogen oxides (NOx), and particulate matter (PM) were measured. Comparisons of regulated emissions results revealed that the vehicles powered on methanol and CNG produced much lower particulate emissions than the conventionally fueled vehicles.
Technical Paper

A Study of Emissions from CNG and Diesel Fueled Heavy-Duty Vehicles

1993-10-01
932826
The West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory was employed to conduct chassis dynamometer tests in the field to measure the exhaust emissions from heavy-duty buses and trucks. This laboratory began operation in the field in January, 1992. During the period January, 1992 through June, 1993, over 150 city buses, trucks, and tractors operated by 18 different authorities in 11 states were tested by the facility. The tested vehicles were powered by 14 different types of engines fueled with natural gas (CNG or LNG), methanol, ethanol, liquified petroleum gas (LPG), #2 diesel, and low sulfur diesel (#1 diesel or Jet A). Some of the tested vehicles were equipped with exhaust after-treatment systems. In this paper, a total of 12 CNG-fueled and #2 diesel-fueled transit buses equipped with Cummins L-10 engines, were chosen for investigation.
Technical Paper

Respirable Particulate Genotoxicant Distribution in Diesel Exhaust and Mine Atmospheres

1992-09-01
921752
Results of a research effort directed towards identifying and measuring the genotoxic properties of respirable particulate matter involved in mining exposures, especially those which may synergistically affect genotoxic hazard, are presented. Particulate matter emissions from a direct injection diesel engine have been sampled and assayed to determine the genotoxic potential as a function of engine operating conditions. Diesel exhaust from a Caterpillar 3304 diesel engine, representative of the ones found in underground mines, rated 100 hp at 2200 rpm is diluted in a multi-tube mini-dilution tunnel and the particulate matter is collected on 70 mm fluorocarbon coated glass fiber filters as well as on 8″ x 10″ hi-volume filters. A six mode steady state duty cycle was used to relate engine operating conditions to the genotoxic potential.
Technical Paper

Chassis Test Cycles for Assessing Emissions from Heavy Duty Trucks

1994-10-01
941946
Recent interest in the effect of engine life on vehicle emissions, particularly those from alternately fueled engines, has led to a need to test heavy duty trucks in the field over their lifetime. West Virginia University has constructed two transportable laboratories capable of measuring emissions as a vehicle is driven through a transient test schedule. Although the central business district (CBD) cycle is well accepted for bus testing, no time-based schedule suited to the testing of class 8 trucks with unsynchronized transmissions is available. The Federal Test Procedure for certifying heavy duty engines can be translated with some difficulty into a flat road chassis cycle although original data clearly incorporated unpredictable braking and inclines. Two methods were attempted for this purpose, but only an energy conservation method proved practical.
Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
X