Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Simulation and Validation of Propeller Shaft Mounting Brackets for Heavy Duty Commercial Vehicles

2017-07-10
2017-28-1947
A propeller shaft is a mechanical component of drive train that connects transmission to drive wheels/axle with the goal to transfer rotation and torque. It is used when the direct connection between transmission and drive axle is not possible due to large distance between their respective assigned design spaces. In commercial vehicles especially in heavy duty (GVW/GCW>15 tons) a single piece propeller shaft is seldom used due to its inherent disadvantages and therefore, most if not all, of the setups consists of multiple pieces of propeller shaft which are directly mounted on to frame cross members with the help of mounting brackets. As such the mounting bracket assembly undergoes various dynamic and static loading conditions and should be able to withstand these loads. This paper will focus on the FEA analysis of propeller shaft mounting assembly system. Furthermore, these results will be correlated with physical tests results collected from test rig and physical vehicle testing.
Technical Paper

Investigation of Bearing Outer Cup Interference Loss in Wheel End Hub of Commercial Vehicle

2015-09-29
2015-01-2730
Ever-increasing operational cost, reducing profit margins & increase in competition, it is of upmost significance for fleet owners & drivers to opt for a vehicle having maximum uptime. OEM's are under immense pressure to design & develop vehicles/subsystems which are reliable enough to minimize downtime & withstand heavy overloading plus extreme operating conditions especially tippers. Vehicle systems like Wheel end (hub, bearing, and grease) which are designed & packaged according to a very stringent envelop & operate as a closed system facing all the extremities of operating conditions. This undoubtly make them prone to no. of failure modes which are resulting in vehicle unplanned stoppages, so any failure mode related to the same must be taken care with utmost importance. In commercial vehicles the bearing outer cup is in interference fit with the hub. These bearings of wheel hub have to be maintained at the wheel end play of few microns.
Technical Paper

Design Optimization of Powertrain Mounts for Vibration Isolation on Heavy Commercial Vehicle (HCV) Six Cylinder Inline Diesel Engine

2015-01-14
2015-26-0127
The main emphasis for a commercial vehicle design which was focused on fuel-economy and durability does not fulfill the increasing customer expectations anymore. Commercial vehicle designers need to focus on other vehicle aspects such as steering, ride comfort, NVH, braking, ergonomics and aesthetics in order to provide car like perception to truck, bus drivers and passengers during long distance drives. Powertrain mounting system must perform many functions. First and foremost, the mounting system must maintain & control the overall motion of the powertrain, to restrict its envelope reasonably, thereby avoiding damage to any vehicle component from the potential impact. This requires the mount to be stiff. Second the mount must provide good vibration isolation to have a comfortable ride to the vehicle occupant. This requires the mount to be soft.
Technical Paper

Structural Non-linear Topology Optimization of Transmission Housing and Its Experimental Verification

2015-03-30
2015-01-0098
Advanced Non-linear topology optimization methods have been addressed as the most promising techniques for light weight and performance design of Powertrain structures. The theoretical achievements are obtained both mechanically and mathematically. Nowadays, the great challenge lies in solving more complicated engineering design problems with multidisciplinary objectives or complex structural systems. The purpose of this paper is to provide a forum to present new developments in structural Non-linear topology optimization. The advantage of the proposed method is that structural optimization on irregular design domains can be carried out easily. Furthermore, this method integrates the stress analysis and the boundary evolution within the framework of finite element methods. In this paper, mainly focused on the Commercial Vehicles Powertrain component i.e. Transmission Housing.
Technical Paper

Aluminum Gear Shift Fork with Supporting Pad for Light Weighting in Commercial Vehicles

2015-03-30
2015-01-0088
To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs. For Commercial Vehicles, an attempt is made to replace existing Gear Shift Fork from FC Iron (Ferro Cast Iron) to ADC (Aluminum Die Casting) without compromising its strength & stiffness, considering/bearing all the worst road load cases and severe environmental conditions. ADC has good mechanical and thermal properties compared to FC Iron. Feasible design has been Optimized within the given design space with an extra supporting pad for load distribution. Optimization, Stiffness, Contact pattern has been done using OptiStruct, Nastran & Ansys for CAE evaluation. A 6-speed manual transmission is used as an example to illustrate the simulation and validation of the optimized design. Advanced linear topology optimization methods have been addressed as the most promising techniques for light weighting and performance design of Powertrain structures.
Technical Paper

Investigation and Optimization of Front Suspension and Steering Geometrical Compatibility

2015-04-14
2015-01-0492
The need to develop products faster and to have designs which are first time right have put enormous pressure on the product development timelines, thus making computer aided optimization one of the most important tool in achieving these targets. In this paper, a design of experiments (DOE) study is used, to gain an insight as to, how changes to different parameters of front suspension and steering of a passenger bus affect its kinematic properties and thus to obtain an optimized design in terms of handling parameters such as bump steer, percent ackermann error and lock to lock rotation angle of steering wheel. The conventional hit and trial method is time consuming and monotonous and still is an approximate method, whereas in design of experiments (DOE), a model is repeatedly run through simulations in a single setup, for various combinations of parameter settings.
X