Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design & Development of Partial Engine Encapsulation for Interior Noise Reduction in Commercial Vehicles

2021-09-22
2021-26-0283
This paper focuses on partial encapsulation technique for reducing air-borne noise from the rocker cover of a commercial vehicle diesel engine. Due to increasing awareness, customers demand for improvised NVH (Noise Vibration and Harshness) performance in modern day vehicles. Better NVH performance implies better comfort for passengers as well as vehicle operator. This further increases the driver up time due to reduced driver fatigue. In order to improve NVH performance of existing vehicle and observe different noise and vibration zones, detailed noise and vibration mapping was carried out on one of our vehicle platform. It is observed that engine noise is one of the major contributors for interior noise, apart from road inputs etc.
Technical Paper

Truck Front Cabin Mount Tuning for Cabin Noise Boom, Overall Interior Noise and Vibration Reduction

2021-09-22
2021-26-0286
In today’s automobile industry refined NVH performance is a key feature and of high importance governing occupant comfort and overall quality impression of vehicle. In this paper interior noise and vibration measurement is done on one of the light truck and few dominant low frequency noise booms were observed in operation range. Modal analysis was done for the cabin at virtual as well as experimental level and few modes were found close to these noise booms. Vibrations were measured across the cabin mounts and it was found that the isolation of front mounts is not effective at lower frequencies. Taking this as an input, the mount design was modified to shift the natural frequency and hence improve the isolation behavior at the lowest dominant frequency. This was followed by static and dynamic measurement of the mounts at test rig level to characterize the dynamic performance and stiffness conclusion.
Technical Paper

Background and Technology Approach for Development and Testing of Auto-Tire Inflation System for Reducing Tire Wear in Commercial Vehicle

2018-04-03
2018-01-1341
The reduction of tire wear in vehicle is one of the major challenges for engineers. Under-inflated tire can cause reduction in tire life along with decrease in driving stability of vehicle. Efforts have been taken to develop a low-cost auto-tire inflation system integrated in vehicle for reduction in tire wear as well as to avoid periodic checks of tire pressure. This paper deals with the technology and design approach required in the development of auto-tire inflation system for commercial vehicle. This system should have the fundamental role of not only monitoring the tire pressure but also inflating the tire to the recommended level of pressure whenever the pressure is reduced below the recommended level. Different approaches have been worked out for integration of system on vehicle with least modification in existing design.
Technical Paper

Design & Development of Helmholtz Resonator for Low Frequency Exhaust Noise Reduction in Commercial Vehicles

2021-09-22
2021-26-0279
In recent times there has been rising demand for noise level reduction in commercial vehicles. Vehicle engine exhaust system is one of the key sources of noise at driver ear, especially in smaller wheel base vehicles, as well as critical for meeting pass by noise regulations. Several techniques are used to reduce the noise level of an exhaust system such as resonators, dissipative mufflers for low & high frequencies respectively. In this paper sound transmission loss (STL) measurement for a LMD bus exhaust system was carried out at rig level. It has been found from the measured data that noise attenuation of current exhaust system is poor in low frequency zone & therefore lower STL frequencies were identified. To attenuate the noises at identified frequencies Helmholtz resonator was introduced, which is particularly effective for low frequency noise attenuation.
X