Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Review of ASTM D-2882 Hardware Problems and Suggested Solutions

1998-09-14
982021
The ASTM test method D-2882 (Standard Test Method for Indicating the Wear Characteristics of Petroleum and Non-Petroleum Hydraulic Fluids in a Constant Volume Vane Pump) is widely used to evaluate hydraulic fluids. Performing this method can be difficult due to problems with the pump hardware and the written procedure. This paper discusses the problems and suggests possible remedies.
Technical Paper

Hydraulic System Cavitation: A Review

1998-09-14
982036
Cavitation is the dynamic process of gas cavity growth and collapse in a liquid. These cavities are due to the presence of dissolved gases or volatile liquids and they are formed at the point where the pressure is less than the saturation pressure of the gas (gaseous cavitation) or vapor pressure (vaporous cavitation). In this paper, various hydraulic system design factors and fluid properties affecting the cavitation process, and bubble collapse mechanisms will be discussed. In-situ generation of cavitation, examination of the cavitation process in model hydraulic systems, material effects and test methods will be reviewed.
Technical Paper

Structure of Carburized Layers With High Wear Resistance

2002-03-19
2002-01-1392
The effect phase composition of carburized constructional steels with a particular focus on the influence of retained austenite and carbides on hardness, impact strength and wear resistance is described. It is shown that increasing retained austenite and carbide content of the hardened carburized layers exhibits useful properties.
Technical Paper

Surface Modification Design: Carburizing With Atmospheres

2002-03-19
2002-01-1505
Atmosphere carburizing remains one of the most important surface treatment technologies throughout the world. In this paper, various important metallurgical design variables are identified by examining the results of the carburisation of 15HN steel. These results showed the importance of the formation of martensite-retained austenite-carbide microstructure after hardening. Increasing austenization temperature causes a decrease in the carbide fraction and an increase in the fraction of retained austenite. By optimisation of the composition of these microstructures through variation of carburisation process, hardening, and tempering variables, it is possible to optimise compressive stresses, abrasive wear resistance, and contact fatigue resistance.
X