Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Experimental and Analytical Methods for Assessing Bearing Performance Under Debris Contaminated Lubrication Conditions

2002-03-19
2002-01-1369
Debris particle contamination in lubricants has been identified as a major cause of premature bearing and gear failure, with accompanying costs in equipment downtime, warranty, and lost productivity. Various experimental and predictive methods have been developed to assist the design engineer in analysis and development of equipment that is less sensititive to such contamination. This paper provides an overview and new data comparing bearing life test results and predictive analysis methods for various tapered roller bearings operating under debris-contaminated conditions. As a baseline, some past work in these areas is briefly summarized and referenced. Recent work has refined one analytical method (using a surface characterization technique), correlated this method with bearing test lives in debris conditions, and pointed to design and manufacturing modifications in the bearings themselves, making the bearings live longer in debris-contaminated environments.
Technical Paper

A Contact Stress Model for Predicting Rolling Contact Fatigue

1992-09-01
921720
Predicting fatigue performance in concentrated contacts under thin film (or mixed) lubrication conditions has historically involved various empirical approaches. Typically a lubrication parameter is used in an experimentally derived equation to predict the expected rolling contact performance. However, this model doesn't explain the performance improvements. Enhanced finish bearings have exhibited longer life than standard finish bearings, especially when bearings are operated with thin EHL film. In this paper, the contact surfaces of test bearings were analyzed by using a micro-macro contact model in which the macro-contact was elastic contact, and the micro-contact was elastic-plastic contact. The interior subsurface stress maps were calculated from the real contact surfaces, which included the effects of roughnesses, waviness, and profiles.
Technical Paper

Observations of the Impact of Lubricant Additives on the Fatigue Life Performance of Tapered Roller Bearings

1995-09-01
952124
Lubricant formulations and lubricant additives have been slanted heavily toward protecting gear concentrated contacts from galling and wear. Much of the performance differentiation of these lubricants has been dependent on highly accelerated standardized laboratory testing. The area of contact fatigue has played a less important role in shaping lubricant formulations, but new test results for several commercially available gear lubricants suggest this area warrants a closer examintion. The implications of these findings for equipment applications are discussed, and suggestions are made for ways to minimize or avoid potential detrimental performance effects.
Technical Paper

Assessing the Detrimental Impact of Lubricant Formulations and Debris Contamination on Tapered Roller Bearing Performance Characteristics

1996-08-01
961830
A debris-contaminated lubrication environment is inherent in many equipment applications and requires mechanical components that, as much as possible, are resistant to the potential detrimental effects of debris particles. In addition, lubricants are formulated with chemistry targeted to prevent wear in mechanical systems, and standard tests are used to evaluate the lubricant's ability to impact this failure mechanism. However, many researchers and lubricant specialists often overlook potential relationships between the various failure modes and the engineering solutions that are created to overcome them. The role played by lubricant additives and debris-contaminated lubricants in the failure mechanisms of bearings is just one example requiring closer consideration. Performance evaluation results of tapered roller bearings in the areas of material fatigue and wear in connection with lubricant contamination and lubricant chemistry will be discussed.
Technical Paper

Debris Signature Analysis: A Method for Assessing the Detrimental Effect of Specific Debris Contaminated Lubrication Environments

1998-04-08
981478
Various methods for evaluating the effectiveness of debris resistant bearings have been proposed for development. Once evaluation methods are well established to select bearings, the user is faced with assessing severity and detrimental effects of a specific application's lubricant contamination on bearing performance. Many analysis tools have been suggested for determining this impact, including particle analysis for size distribution, type of material and contamination level. A novel approach for determining severity of damage has been investigated which attempts to integrate these typical tools with actual damage to functional surfaces. It seeks to provide a practical approach and is appropriately labeled Debris Signature Analysis. Results of actual assessments will be discussed and the assessment method described.
Technical Paper

A Standardized Method for Evaluating Debris Resistance of Rolling Element Bearings

1994-09-01
941787
Debris resistant bearings are being promoted by various bearing manufacturers as a solution for many contaminated lubrication environments. The baseline for such claims is often unclear for the bearing user and leaves questions as to how the information relates to specific field applications. In order to determine the benefits, if any, of these new product offerings and to assess their effectiveness, a standard method of evaluation is needed. An approach to satisfying this need is described and typical results are provided for several commercially available bearing products.
X