Criteria

Text:
Display:

Results

Viewing 1 to 30 of 530
2011-04-12
Technical Paper
2011-01-0627
Jim Steppan, Brett Henderson, Kent Johnson, M. Yusuf Khan, Timothy Diller, Matthew Hall, Anthoniraj Lourdhusamy, Klaus Allmendinger, Ronald D. Matthews
EmiSense Technologies, LLC (www.emisense.com) is commercializing its electronic particulate matter (PM) sensor that is based on technology developed at the University of Texas at Austin (UT). To demonstrate the capability of this sensor for real-time PM measurements and on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed to characterize the engine PM emissions and to compare with the PM sensor response. Computational fluid dynamics (CFD) modeling was performed to characterize the hydrodynamics of the sensor's housing and to develop an improved PM sensor housing with reproducible hydrodynamics and an internal baffle to minimize orientation effects. PM sensors with the improved housing were evaluated in the truck exhaust of a heavy duty (HD) diesel engine tested on-road and on a chassis dynamometer at the University of California, Riverside (UCR) using their Mobile Emissions Laboratory (MEL).
2011-04-12
Technical Paper
2011-01-0692
Hamid R. Rahai, Ehsan Shamloo, Jeremy Ralph Bonifacio
The effects of humid air on the performance of a naturally aspired three-cylinder diesel engine with low sulfur diesel fuel have been investigated. The additions of the humidity to intake air were performed with a variable steam generator using distilled water, where the relative humidity levels of the intake air were changed from the ambient conditions of 65% to 75% and 95% levels. The tests were performed at two approximate engine output brake horse powers (BHP) of 5.9, and 8.9. Results showed approximately 3.7% and 22.5% reduction in NO x emissions when the relative humidity of the air was increased from 65% (the ambient relative humidity) to 75% and 95% respectively. The addition of the humidity results in increases in the CO, CO₂, and particulate matter (PM), by approximately 3.7, 3.55, 14.9 percents at 5.9 BHP and 22, 2.8, and 9.3 percents at 8.9 BHP. There was no change in the brake specific fuel consumption (BSFC) at 5.9 BHP and about 2.7 increase in the BSFC at 8.9 BHP.
2013-09-24
Technical Paper
2013-01-2466
Steffen Daum, Sadanand Bhosale, Gernot Graf, Dipankar Ray
The increasingly stringent emission legislations provide a continuous challenge for the non-road market. In parallel to transient test cycles, increased emission durability as well as real driving emissions must be fulfilled. The enormous diversification of engines within the different power classes as well as the specific operation requirements regarding various duty cycles, robustness and durability, requires specific solutions to meet these legal limits. The publication shows a cost efficient, reliable and durable approach based on the example of a tractor engine jointly developed by Mahindra & Mahindra Ltd. (M&M) and AVL. It was found that a naturally aspirated (NA) application equipped with common rail and combined with cooled exhaust gas recirculation (EGR) is able to fulfill all legal Environmental Protection Agency (EPA) Tier 4 requirements with a minimum effort on the exhaust aftertreatment side by using only a diesel oxidation catalyst.
2013-09-24
Journal Article
2013-01-2453
Essam Oun Al-Zaini, Dean M. Chesterfield
This paper reports the optimisation study of a batch scaled ethanolysis conversion of waste frying oil carried out over aluminium phosphate-potassium bi-functional catalysts. All synthesised catalysts were analysed for their structural and surface chemical properties thereby following N2 adsorption-desorption isotherm and CO2 and NH3-temperature programmed desorption techniques respectively. X-ray diffraction and x-ray photoelectron spectroscopy were also adopted for phase identification and atomic quantification studies respectively. Ethanolysis experiments were carried out eliminating reaction rate limitations caused by solid-liquid interfacial mass transport and intraparticle diffusion. Other operating parameters were also examined in the study. These included; reaction temperature, catalyst percentage loading on support, catalyst weight and reactants molar ratio (β).
2013-09-24
Technical Paper
2013-01-2424
Jyotirmoy Barman
Exhaust gas recirculation is one important measure to achieve the Bharat Stage IV, Bharat Stage V as well as the Euro V emissions legislation. EGR is one of the most promising solutions to reduce NOx to achieve Bharat Stage IV emission norms for any high specific power engine. An emissions and performance study was conducted to explore the effects of EGR and multiple injections on particulate, NOx, and BSFC. Recent work has shown that multiple injections are effective at reducing particulate. Thus, it was of interest to examine the possibility of simultaneously reducing particulate and NOx with the combined use of EGR and multiple injections. The tests were conducted on a four cylinder four valve light duty truck engine. Tests were done at emission modes (A, B & C Modes) with EGR are variation along with different injection strategies. The fuel system used was an electronically controlled, common rail injector and supporting hardware.
2013-09-24
Journal Article
2013-01-2430
James Smith, Justin Greuel, Brian Ratkos, Ethan Schauer
Implementation of EPA's heavy-duty engine NOx standard of 0.20 g/bhp-hr has resulted in the introduction of a new generation of emission control systems for on-highway heavy-duty diesel engines. These new control systems are predominantly based around aftertreatment systems utilizing urea-based selective catalytic reduction (SCR) techniques, with only one manufacturer relying solely on in-cylinder NOx emission reduction techniques. As with any new technology, EPA is interested in evaluating whether these systems are delivering the expected emissions reductions under real-world conditions and where areas for improvement may lie. To accomplish these goals, an in-situ gaseous emissions measurement study was conducted using portable emissions measurement devices. The first stage of this study, and subject of this paper, focused on engines typically used in line-haul trucking applications (12-15L displacement).
2013-09-24
Technical Paper
2013-01-2385
N. Santosh Datta
With evolution of emission norms in diesel engines, NOx emission limits became more stringent and can be met only with specific NOx emission control systems. The NOx control systems in heavy duty diesel engines are monitored for OBD regulations in on-highway applications. Additionally driver warning and inducement requirements for NOx emission control systems are to be complied in both on-highway and off-highway applications. The driver inducement requirements are defined with intent to enforce and ensure correct operation of NOx control system. The NOx control systems and inducement measures are implemented in engine Electronic Control Unit (ECU) software to be compliant to legislation. The paper focuses on driver inducement requirements for NOx emission control systems. The paper summarizes the inducement requirements with a system overview and software design to meet driver inducement requirements for EUVI legislation and CARB/EPA compliance.
2013-09-24
Technical Paper
2013-01-2348
Yajun Liu, Wei Wang, Zhiyong Wang, Wei Wei, John Lumkes
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
2004-06-08
Technical Paper
2004-01-1939
Paul Richards, B. Terry, J. Chadderton, M. W. Vincent
In an attempt to improve ambient air quality, retrofit programmes have been encouraged; targeting reductions in PM emissions by means of diesel particulate filters (DPFs). However depending on the DPF design and operating conditions increased nitrogen dioxide (NO2) emissions have been observed, which is causing concern. Previous work showed that retrofitting a DPF system employing a fuel borne catalyst (FBC) to facilitate regeneration, reduced NO2 emissions. This paper outlines the investigation of a base metal coated DPF to enhance the reduction of NO2. Such a DPF system has been fitted to older technology buses and has demonstrated reliable field performance.
2013-01-09
Technical Paper
2013-26-0049
Teuvo Maunula, Arto Viitanen, Toni Kinnunen, Kauko Kanniainen
The emission regulations for mobile applications become stricter in Euro-IV to Euro-VI levels. Carbon monoxide and hydrocarbon can be removed by efficient Diesel Oxidation Catalysts (DOC) but Particulate Matter (PM) and NOx are more demanding requiring the use of active methods (urea-SCR and DPF) which will be world-wide implemented in the 2010's. Durable, coated V-SCR catalysts are based on stabilized raw materials and tailored preparation methods. Coated V2O5/TiO2-WO3 catalysts (ceramic 300/400 cpsi and metallic 500/600 cpsi) were evaluated by laboratory and engine bench experiments. Traditional V-SCR catalysts are durable up to about 600°C and have a high efficiency at 300°C-500°C. SCR activities were tailored to be higher also at 200°C-300°C or 500°C-600°C. The use of thermal stabilizers or the vanadium loading variation enabled the changes in operation window and stability.
2013-01-09
Technical Paper
2013-26-0054
Dushyant Bhatt, Shivraj Waje, K. V. R. Babu, Jurgen Henn, Sven Seifert, R. M. Cursetji, Dinesh Kumar, Touquire A. Siddiquie
Small Commercial Vehicle (SCV) is an emerging Commercial Vehicle (CV) segment both in India and throughout the world. Vehicles in this segment have diesel engine of capacity less than 1 l and GVW of less than 3.5 t. Normally for the CV, engines are tested on engine dynamometer for emission test, but SCV are tested on chassis dynamometer as they are classified as N1.1 class vehicles. Hence SCV have to follow same emission regulations as diesel passenger cars. The main challenge is to meet BS-IV NOx and PM emission target together with high torque optimization along with required durability targets. This paper addresses this challenge and reports the work carried out on an Indian SCV with 0.7 l naturally aspirated indirect injection diesel engine.
2013-10-07
Technical Paper
2013-36-0209
Anibal Godoy Machado, Nilton Mitsuro Shiraiwa
With the purpose of minimizing the gaseous emissions impacts on the metropolitan areas, many alternative fuel resources has been developed as alternatives to fossil fuels. An environmentally and economical interesting alternative for the Brazilian market is the diesel made from sugar cane (Farnesene - C15H32). The Farnesene, made by sugar cane juice fermentation in presence of a genetically modified yeast is basically a saturated hydrocarbon molecule (C15H32) with more than 98% purity and that presents properties comparable to fossil diesel and when used in regular diesel cycle engines can bring significantly reductions not only in soot levels (Particulate Matter - PM) but also on the Nitrogen Oxides (NOx), unlike the biodiesel, that is well known that it brings increases on NOx emission level due its physic-chemical properties. Reduction on CO2 levels on life cycle is another important benefit of using such fuel since it's made by renewable feedstock.
2013-10-07
Technical Paper
2013-36-0208
Anibal Godoy Machado, Nilton Mitsuro Shiraiwa
With focus on reducing the Green House Gases emissions, the use of biodiesel as an alternative fuel, in special for buses that runs on the Brazilian metropolitan areas has been even higher. Additionally, with the introduction of the new legislation for diesel engines in 2012, CONAMA PROCONVE P7, that in order to attempt to its requirements uses different kinds of exhaust gases after treatment systems, the necessity of knowing the behavior of those “P7 engines” operating with different biodiesel contents on blends with regular fossil fuel or even pure biodiesel has been an important issue to ensure the benefits of using such alternative fuel. On this evaluation, blends of 5%, 10%, 20%, 30%, 50%, 75% and 100% of biodiesel content in ANP65/2011 A_S50 Diesel Fuel (50ppm Sulfur content) was experimented in a Mercedes-Benz OM926LA E5 engine with SCR (Selective Catalyst Reaction) exhaust gases after treatment system.
2013-09-08
Technical Paper
2013-24-0093
Riccardo Rossi, Ettore Musu, Stefano Frigo, Roberto Gentili, Rolf D. Reitz
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
2011-04-12
Technical Paper
2011-01-1140
Julian Tan, Charles Solbrig, Steven J. Schmieg
Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO₂ emissions; however, efficient removal of NOx and particulate matter from the engine exhaust is required to meet stringent emission standards. A conventional diesel aftertreatment system consists of a Diesel Oxidation Catalyst (DOC), a urea-based Selective Catalyst Reduction (SCR) catalyst and a diesel particulate filter (DPF), and is widely used to meet the most recent NOx (nitrogen oxides comprising NO and NO₂) and particulate matter (PM) emission standards for medium- and heavy-duty sport utility and truck vehicles. The increasingly stringent emission targets have recently pushed this system layout towards an increase in size of the components and consequently higher system cost. An emerging technology developed recently involves placing the SCR catalyst onto the conventional wall-flow filter.
2011-04-12
Technical Paper
2011-01-1329
Mario Castagnola, Jonathan Caserta, Sougato Chatterjee, Hai-Ying Chen, Raymond Conway, Joseph Fedeyko, Wassim Klink, Penelope Markatou, Sandip Shah, Andrew Walker
Since early 2010, most new medium- and heavy-duty diesel vehicles in the US rely on urea-based Selective Catalytic Reduction (SCR) technology for meeting the most stringent regulations on nitrogen oxides (NOx) emissions in the world today. Catalyst technologies of choice include Copper (Cu)- and Iron (Fe)-based SCR. In this work, the performances of Fe-SCR and Cu-SCR were investigated in the most commonly used DOC + CSF + SCR system configuration. Cu-SCR offered advantages over Fe-SCR in terms of low temperature conversion, NO₂:NOx ratio tolerance and NH₃ slip, while Fe-SCR demonstrated superior performance under optimized NO₂:NOx ratio and at higher temperatures. The Cu-SCR catalyst displayed less tolerance to sulfur (S) exposure. Reactor testing has shown that Cu-SCR catalysts deactivate at low temperature when poisoned by sulfur.
2011-04-12
Journal Article
2011-01-1383
Clément Chartier, Oivind Andersson, Bengt Johansson, Mark Musculus, Mohan Bobba
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
2011-08-30
Journal Article
2011-01-1961
Takashi Hara, Naoki Shimazaki, Naoki Yanagisawa, Takeshi Seto, Shigehisa Takase, Takeshi Tokumaru, Takurou Mita, Takeshi Okamoto, Yoshio Sato
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
2011-08-30
Technical Paper
2011-01-1962
Fredrik Konigsson, Per Stalhammar, Hans-Erik Ångström
Diesel Dual Fuel, DDF, is a concept where a combination of methane and diesel is used in a compression ignited engine, maintaining the high compression ratio of a diesel engine with the resulting benefits in thermal efficiency. One benefit of having two fuels on board the vehicle is the additional degree of freedom provided by the ratio between the fuels. This additional degree of freedom enables control of combustion phasing for combustion modes such as Homogenous Charge Compression Ignition, HCCI, and Partly Premixed Compression Ignition, PPCI. These unconventional combustion modes have great potential to limit emissions at light load while maintaining the low pumping losses of the base diesel engine. A series of tests has been carried out on a single cylinder lab engine, equipped with a modern common rail injection system supplying the diesel fuel and two gas injectors, placed in the intake runners.
2011-08-30
Technical Paper
2011-01-1965
Reijo Makinen, Nils-Olof Nylund, Kimmo Erkkilä lng, Pirjo Saikkonen, Arno Amberla
Helsinki Region Transport, Neste Oil, Proventia Emission Control and VTT Technical Research Centre of Finland carried out a 3.5 year PPP venture “OPTIBIO” to demonstrate the use of paraffinic renewable diesel (hydrotreated vegetable oil HVO) in city buses. The fleet test in Metropolitan Helsinki involving some 300 buses is the largest one in the world to demonstrate this new fuel. The fuels were a 30 % blend of renewable diesel and 100 % renewable diesel. This paper describes the overall set-up of the project, gives an overview of the emission results as well as presents experience from the field.
2011-08-30
Technical Paper
2011-01-1966
Kimmo Erkkilä, Nils-Olof Nylund, Tuomo Hulkkonen, Aki Tilli, Seppo Mikkonen, Pirjo Saikkonen, Reijo Makinen, Arno Amberla
When switching from regular diesel fuel (sulfur free) to paraffinic hydrotreated vegetable oil (HVO), the changes in fuel chemistry and physical properties will affect emission characteristics in a very positive way. The effects also depend on the technology, after-treatment and sophistication of the engine. To determine the real effects in the case of city buses, 17 typical buses, representing emission classes from Euro II to EEV, were measured with HVO, regular diesel and several blended fuels. The average reduction was 10% for nitrogen oxides (NOx) and 30% for particulate matter (PM). Also some engine tests were performed to demonstrate the potential for additional performance benefits when fuel injection timing was optimized for HVO.
2011-09-13
Technical Paper
2011-01-2183
Meisam Mehravaran, Giles Brereton
EGR coolers are used in combustion engines to reduce NOx emissions. However, heat transfer in these coolers also results in thermophoresis-temperature-gradient driven motion of suspended particles towards cooler regions-which leads to significant soot deposition. A simple one-dimensional model is proposed to predict the deposition velocity and soot layer thickness that compares reasonably well with experimental data. The behavior of soot deposits on cooled surfaces is complex, with the thickness of the soot layer stabilizes after around 100 hours, reaching a uniform, thickness over the entire heat-exchanger surface. An analysis of this trend and a tentative mechanism to explain this type of behavior is given, based on experimental observations.
2011-08-30
Technical Paper
2011-01-2097
A. Wiartalla, L. Ruhkamp, Y. Rosefort, F. Maassen, B. Sliwinski, T. Schnorbus, T. Laible
From current point of view future emission legislations for heavy-duty engines as well as industrial engines will require complex engine internal measures in combination with sophisticated aftertreatment systems as well as according control strategies to reach the emission targets. With EU VI, JP 09/NLT and US10 for heavy-duty engines as well as future Tier4 final or stage IV emission legislation for industrial applications, EGR + DPF + SCR probably will be combined for most applications and therefore quite similar technological approaches will be followed up in Europe as well as in the US and in Japan. Most “emerging markets” all over the world follow up the European, US or Japanese emission legislation with a certain time delay. Therefore similar technologies need to be introduced in these markets in the future. On the other hand specific market boundary conditions and requirements have to be considered for the development of tailored system concepts in these markets.
2011-08-30
Technical Paper
2011-01-2066
Toshitaka Nakamura, Yasumasa Suzuki, Jin Kusaka, Masatoshi Ogawa, Harutoshi Ogai, Shigeki Nakayama, Takao Fukuma
Model based control design is an important method for optimizing engine operating conditions so as to simultaneously improve engines' thermal efficiency and emission profiles. Modeling of intake system that includes an intake throttle valve, an EGR valve and a variable geometry turbocharger was constructed based on conservation laws combined with maps. Calculated results were examined the predictive accuracy of fresh charge mass flow, EGR rate and boost pressure.
2011-08-30
Technical Paper
2011-01-2087
Nobuhiro Yanagisawa, Keiko Shibata, Kenji Enya, Kaoru Satou
In order to reduce fine particle emission, a diesel particulate filter (DPF) has begun to be equipped to a diesel engine. During regeneration of DPF, nanoparticles are known to be formed downstream of DPF. VOCs emission during regeneration is of interest in view of toxicity and formation mechanism of nanoparticles. A heavy duty diesel engine equipped with DPF was investigated to measure particle and VOCs emissions using PTR-TOFMS (Proton Transfer Reaction - Time of Flight Mass Spectrometer). PTR-TOFMS is a new on-line mass spectrometer using chemical ionization and its application to engine exhaust measurements is new. During active regeneration of the DPF, fine particle emission was increased by nucleation. But VOCs as well as THC emissions increased prior to particle increase. After the regeneration the particle and VOCs emissions decreased immediately to the level of normal operation.
2011-04-12
Journal Article
2011-01-0858
Alexander T. Zaremba, Mark Jennings
This paper presents a purge system model developed for hybrid electric vehicle (HEV) applications. Assessment of purge capability is critical to HEV vehicles due to frequent engine off operation which limits carbon canister purging. The purge model is comprised of subsystems representing purge control strategy, carbon canister and engine plant. The paper is focused on modeling of the engine purge control feature. The purge model validation and purge capability predictions for an example HEV vehicle are presented and discussed.
2011-04-12
Technical Paper
2011-01-0295
Makoto Kimura, Toshikatsu Muramatsu, Eiji Kunishima, Jun Namima, Wilbur Crawley, Tony Parrish
EPA 2010 emissions regulations - currently the strictest standards in the world - place particular emphasis on exhaust gas thermal control technology. The Burner System, a device developed to control exhaust gas temperatures, is the most effective means of raising exhaust gas temperature, as this system can function under any engine conditions, including low engine speed and torque. The Burner System begins operating immediately when the engine is started, activating the Diesel Exhaust Fluid (DEF) - Selective Catalytic Reduction (SCR) System immediately, because the Burner System is active, it enables the diesel particulate filter active regeneration under any engine operating conditions as well. This technical paper reports Burner System (ActiveClean™ Thermal Regenerator) development results.
2011-04-12
Technical Paper
2011-01-0309
Ted Straten, Johan van den Berk
The next generation off-road vehicles will see additional exhaust gas aftertreatment systems, ranging from DOC-SCR only to full DOC-DPF-SCR-AMOX systems. This will increase system complexity and development effort significantly. Emission requirements and the high number of vehicle configurations within the off-road industry will require a new process for development and validation. The introduced model-based approach using physical models of aftertreatment can reduce development effort and cost, improve performance robustness and help to identify performance issues early in the development process. A method to investigate and optimize a large matrix of variations by simulation is introduced. This can lead to a significant reduction in the number of required calibrations and can assist in the development of design specifications for the aftertreatment system. A case study for SCR calibration successfully demonstrates the potential of model-based development.
2011-04-12
Technical Paper
2011-01-0369
Masayuki Kobayashi, Yuzo Aoyagi, Takayuki Adachi, Tetsuya Murayama, Munemasa Hashimoto, Yuichi Goto, Hisakazu Suzuki
Reduction of exhaust emissions and BSFC was studied for high pressure, wide range, and high EGR rates in a Super-clean Diesel six-cylinder heavy duty engine. The GVW 25-ton vehicle has 10.52 L engine displacement, with maximum power of 300 kW and maximum torque of 1842 Nm. The engine is equipped with high-pressure fuel injection of a 200 MPa level common-rail system. A variable geometry turbocharger (VGT) was newly designed. The maximum pressure ratio of the compressor is about twice that of the previous design: 2.5. Additionally, wide range and a high EGR rate are achieved by high pressure-loop EGR (HP-EGR) and low pressure-loop EGR (LP-EGR) with described VGT and high-pressure fuel injection. The HP-EGR can reduce NOx concentrations in the exhaust pipe, but the high EGR rate worsens smoke. The HP-EGR system layout has an important shortcoming: it has great differences of the intake EGR gas amount into each cylinder, worsens smoke.
1999-10-25
Technical Paper
1999-01-3560
Irene Begsteiger, Klaus Richter, Eberhard Jacob, Gerhard Emmerling
A new type of catalyst for exhaust emission control of Diesel engines has been developed by a catalyst producer in cooperation with engine/heavy duty truck manufacturers. This so-called Sorption/Oxidation (“SO”)-catalyst is an extruded TiO2-type and works as a HC-trap as well as oxidation catalyst for hydrocarbons. In addition, a certain amount of particle matter was reduced, depending on type of engine, fuel sulfur content and test cycle. Due to its unique composition, i.e. oxides of titanium (80 wt %), tungsten and vanadium, the catalytic selectivity results in very low formation of sulfates as well as excellent resistance against sulfur compounds. The geometry of the catalyst prototypes corresponds to standard monoliths of 5,66″(144mm) in diameter and suitable lengths to be installed in standard mufflers. Since 1996, several buses and trucks have been equipped with SO-catalysts and are still in operation without problems.
Viewing 1 to 30 of 530

Filter

  • Range:
    to:
  • Year: