Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 357
2010-10-05
Technical Paper
2010-01-2033
Gergis W. William
Currently, the chassis assembly contributes about 73 percent of the overall weight of a 14.63 m long haul trailer. This paper presents alternative design concepts for the structural floor of a van trailer utilizing sandwich panels with various material and geometric characteristics of the core layer in order to reduce its weight significantly below that of the current design configuration. The main objective of the new designs is to achieve optimal tradeoffs between the overall structural weight and the flexural stiffness of the floor. Various preliminary design concepts of the core designs were compared on the basis of a single section of the core structure. Six different designs were analyzed by weight, maximum displacement and maximum stress under bending and torsion loads. Each concept was kept uniform by length, thickness, loading and boundary conditions. Each design concept was examined through testing of scaled model for floor assemblies.
2010-10-05
Technical Paper
2010-01-2036
Gergis W. William
Recent advances in Metal Matrix Composites have made them ready for transition to large-volume production and commercialization. Such new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel. The increasing requirements of weight savings and extended durability motivated the potential application of MMC technology into the heavy vehicle market. However, significant technical barriers such as joining are likely to hinder the broad applications of MMC materials in heavy vehicles. The focus of this paper is to examine the feasibility of manufacturing and the behavior of bolted joint connections made from aluminum matrix reinforced with Silicon Carbide (SiC) particles. Two reinforcement ratios: 20% and 45% were considered in this study. The first part of the paper concentrates on experimental evaluation of bolted MMC joints.
2004-03-08
Technical Paper
2004-01-1588
Adam B. Cooper, Michael Kokkolaras, Panos Y. Papalambros
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
2004-10-26
Technical Paper
2004-01-2687
Paul G. Evans, Kevin Johanson
This paper describes a radical new approach to variable flow oil pump design, which addresses some concerns of earlier designs and also conventional fixed displacement pumps. Detailed here are the testing and results to date, the potential areas for the future work, together with the reduction in parasitic power loss and potential fuel consumption savings. Also discussed are the benefits that can be realised by using this product as a tool for radically changing current automotive lubrication systems.
2013-01-09
Technical Paper
2013-26-0018
Rajeev Verma, Nikhil Nahar, Zhijun Tang, Benjamin Saltsman
Commercial vehicle operators and governments around the world are looking for ways to cut down on fuel consumption for economic and environmental reasons. Two main factors affecting the fuel consumption of a vehicle are the drive route and the driver behavior. The drive route can be specified by information such as speed limit, road grade, road curvature, traffic etc. The driver behavior, on the other hand, is difficult to classify and can be responsible for as much as 35% variation in fuel consumption. In this work, nearly 600,000 miles of drive data is utilized to identify driving behaviors that significantly affect fuel consumption. Based on this analysis, driving scenarios and related driver behaviors are identified that result in the most efficient vehicle operation. A driver assistance system is presented in this paper that assists the driver in driving more efficiently by issuing scenario specific advice.
2011-04-12
Technical Paper
2011-01-1206
Wim van Dam, Trevor Miller, Gary Parsons
The heightened interest level in Fuel Economy for Heavy Duty Diesel Engines the industry has seen over the last few years continues to be high, and is not likely to change. Lowering the fuel consumption of all internal combustion engines remains a priority for years to come, driven by economic, legislative, and environmental reasons. While it is generally assumed that lower viscosity grade lubricants offer fuel economy benefits, there is a lot of confusion about exactly what drives the fuel economy benefits. Fuel Economy claims in trade literature vary over a broad range and it is difficult for the end user to determine what to expect when a change in lubricant viscosity is adopted for a fleet of vehicles in a certain type of operation. This publication makes an attempt at clarifying a number of these uncertainties with the help of additional engine test data, and more extensive data analysis.
2011-09-13
Technical Paper
2011-01-2275
Fernando Tavares, Rajit Johri, Ashwin Salvi, Simon Baseley, Zoran Filipi
The paper describes the approach, addresses integration challenges and discusses capabilities of the Hybrid Powertrain-in-the-Loop (H-PIL) facility for the series/hydrostatic hydraulic hybrid system. We describe the simulation of the open-loop and closed-loop hydraulic hybrid systems in H-PIL and its use for concurrent engineering and development of advanced supervisory strategies. The configuration of the hydraulic-hybrid system and details of the hydraulic circuit developed for the H-PIL integration are presented. Next, software and hardware interfaces between the real components and virtual systems are developed, and special attention is given to linking component-level controllers and system-level supervisory control. The H-PIL setup allows imposing realistic dynamic loads on hydraulic pump/motors and accumulator based on vehicle driving schedule.
2011-09-13
Technical Paper
2011-01-2274
Chinmaya Patil, Michael olson, Benjamin Morris, Clark Fortune, Bapiraju Surampudi, Joe Redfield, Heather Gruenewald
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
2011-09-13
Technical Paper
2011-01-2191
Alberto Boretti, Houshsng Masudi, Joseph Scalzo
The introduction of advanced internal combustion engine mechanisms and powertrains may improve the fuel conversion efficiency of an engine and thus reduce the amount of energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the induction stroke therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine. Results of vehicle driving cycle simulations of a light-duty gasoline vehicle with the advanced engine show dramatic improvements of fuel economy.
2011-08-30
Journal Article
2011-01-2124
W. van Dam, T. Miller, G. M. Parsons, Y. Takeuchi
The heightened interest level in Fuel Economy for Heavy Duty Diesel Engines the industry has seen over the last few years continues to be high, and is not likely to change. Lowering the fuel consumption of all internal combustion engines remains a priority for years to come, driven by economic, legislative, and environmental reasons. While it is generally assumed that lower viscosity grade lubricants offer fuel economy benefits, there is a lot of confusion about exactly what drives the fuel economy benefits. Fuel Economy claims in trade literature vary over a broad range and it is difficult for the end user to determine what to expect when a change in lubricant viscosity is adopted for a fleet of vehicles in a certain type of operation. This publication makes an attempt at clarifying a number of these uncertainties with the help of additional engine test data, and more extensive data analysis.
2011-08-30
Journal Article
2011-01-2129
David Andrew Green, K. Selby, R. Mainwaring, R. Herrera
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
2011-08-30
Journal Article
2011-01-2130
Robert Taylor, K. Selby, R. Herrera, D. A. Green
A predictive model for estimating the fuel saving of “top tier” engine, axle and transmission lubricants (compared to “mainstream” lubricants), in a heavy duty truck, operating on a realistic driving cycle, is described. Simulations have been performed for different truck weights (10, 20 and 40 tonnes) and it was found that the model predicts percentage fuel economy benefits that are of a similar magnitude to those measured in well controlled field trials1. The model predicts the percentage fuel saving from the engine oil should decrease as the vehicle load increases (which is in agreement with field trial results). The percentage fuel saving from the axle and gearbox oils initially decreases with load and then stays more or less constant. This behaviour is due to the detailed way in which axle and gearbox efficiency varies with speed/load and lubricant type.
2011-04-12
Technical Paper
2011-01-0311
Ho Teng, Jeffrey Klaver, Talus Park, Gary L. Hunter, Bryan van der Velde
Waste heat recovery (WHR) has been recognized as a promising technology to achieve the fuel economy and green house gas reduction goals for future heavy-duty (HD) truck diesel engines. A Rankine cycle system with ethanol as the working fluid was developed at AVL Powertrain Engineering, Inc. to investigate the fuel economy benefit from recovering waste heat from a 10.8L HD truck diesel engine. Thermodynamic analysis on this WHR system demonstrated that 5% fuel saving could be achievable. The fuel economy benefit can be further improved by optimizing the design of the WHR system components and through better utilization of the available engine waste heat. Although the WHR system was designed for a stand-alone system for the laboratory testing, all the heat exchangers were sized such that their heat transfer areas are equivalent to compact heat exchangers suitable for installation on a HD truck diesel engine.
1999-11-15
Technical Paper
1999-01-3738
Bruce E. Finley, Tracy A. Daly
This report details the experiences of two California public transit agencies that replaced aging diesel buses with new compressed natural gas (CNG) buses in 1994. The operating characteristics and costs of 170 natural gas buses are compared with 73 older diesel buses. The natural gas bus fleets have operated well and led to cost reductions in both fleets. The findings are particularly significant because both Sacramento Regional Transit District (RT) and SunLine Transit Agency have been using the same engine-chassis configuration, thus enabling a valid method to combine cost data for a large sample fleet of buses. The data indicate that labor for diesel equipment was almost twice that for CNG vehicles, parts were 25% more and fuel costs were nearly double. In 1997, CNG buses saved RT over $1 million in fuel, maintenance, parts and hazardous waste disposal, a 38% per mile reduction over the cost of their older diesel buses.
2011-10-06
Technical Paper
2011-28-0048
Shigeru Ueki, Yutaka Takada
Eco-Driving which is environmentally friendly driving manner is greatly effective way to prevent global warming and to improve air pollution caused by exhaust emissions from vehicles. LEVO has been conducting the EMS promotion program for freight companies etc. since 2005. This program aims at implementing Eco-Driving continuously and well-systematically for drivers. More than 96,000 trucks and buses in 5,140 companies have been joined the program and implementing environmentally friendly driving manner by using Eco-Driving support devices. In this paper, the outcome of Eco-Driving promotion conducted by LEVO is described and the effects on fuel saving and the effect of CO2 reduction attributed to the Eco-Driving management activities are shown.
2011-09-11
Technical Paper
2011-24-0083
Laura Tribioli, Fabrizio Martini, Giovanni Pede, Carlo Villante
Hybrid electric vehicles (HEVs) are worldwide recognized as one of the best and most immediate opportunities to solve the problems of fuel consumption, pollutant emissions and fossil fuels depletion, thanks to the high reliability of engines and the high efficiencies of motors. Moreover, as transport policy is becoming day by day stricter all over the world, moving people or goods efficiently and cheaply is the goal that all the main automobile manufacturers are trying to reach. In this context, the municipalities are performing their own action plans for public transport and the efforts in realizing high efficiency hybrid electric buses, could be supported by the local policies. For these reasons, the authors intend to propose an efficient control strategy for a hybrid electric bus, with a series architecture for the power-train.
2010-10-05
Technical Paper
2010-01-1990
Lawrence M. Rice
Light Emitting Diodes (LEDs) are commonly used for signaling and marking functions on commercial vehicles. Recent work on new LED modules will allow the use of LEDs for illumination functions.
2012-10-02
Technical Paper
2012-36-0204
Keith E. Bandi
Improved fuel economy translates into significant savings over the life of a fleet vehicle. Aside from fuel cost savings, tighter emissions regulations require truck Original Equipment Manufacturers (OEMs) to improve the fuel economy of the products they bring to market. OEMs are dependent on Tier 1 suppliers for many systems which have a direct impact on vehicle fuel efficiency. Tier 1 suppliers are then dependent on sub-suppliers for components which affect the fuel efficiency of the system. Improvements in tapered roller bearing design and technology can significantly improve the fuel efficiency of driveline systems. This paper summarizes the improvement in bearing efficiency by applying advanced design and technology solutions. Analysis was used to predict the affect of design changes, leading to an optimized solution. Testing was performed to verify the improvement in bearing efficiency.
2012-10-02
Technical Paper
2012-36-0139
Fabio Coelho Barbosa
Stricter environmental regulation and the increasing concern about fuel economy and emissions have driven transit agencies and operators toward environmental and economic concerns when selecting transit bus technology. In this scenario, hybrid bus, that combines two or more distinct propulsion systems (generally combustion engine and electric motor), has been seen as a choice that balances both the need for better environmental and efficiency performance and capital expenditures for introducing new technology-based transit bus fleets. The source of better performance of hybrid buses is the ability to i) optimize the operating point of combustion engine to achieve best fuel economy; ii) store energy generated during braking at storage devices (batteries, supercapacitors or flywheels), to be used to power the vehicle when needed, and, hence, iii) downsizing engine due to reduced average power requirements.
2012-09-24
Technical Paper
2012-01-2051
Murat Ates, Ronald D. Matthews
To perform coastdown tests on heavy-duty trucks, both long acceleration and coasting distances are required. It is very difficult to find long flat stretches of road to conduct these tests; for a Class 8 truck loaded to 80,000 lb, about 7 miles of road is needed to complete the coastdown tests. In the present study, a method for obtaining coastdown coefficients from data taken on a road of variable grade is presented. To this end, a computer code was written to provide a fast solution for the coastdown coefficients. Class 7 and Class 8 trucks were tested with three different weight configurations: empty, “cubed-out” (fully loaded but with a payload of moderate density), and “weighed-out” (loaded to the maximum permissible weight).
2012-09-24
Technical Paper
2012-01-2048
Suryanarayana A N Prasad, Murali Manickam, Balakrishnan D, N Saravanan
With growing fuel prices and global warming, fuel economy improvement and reduced emissions are becoming order of the day. Automobile manufacturers around the world are in increasing pressure to achieve the same, also keeping in account the stiff timelines required in the product developmental cycle. Condensed duty cycle that is representative of several days of actual real life running is developed for quicker fuel economy tuning on a chassis dynamometer. This paper presents a new methodology to obtain a synthetic drive duty cycle, which matches engine operating conditions of the actual real life cycle accurately and thereby providing a more accurate match in fuel economy. Drive duty cycle (vehicle velocity profile) used in this study is extracted from the instrumented vehicle in the real traffic condition (peak/lean hour) of major cities in India at different location/load conditions. Each recorded trip is further divided into micro trips.
2012-09-24
Technical Paper
2012-01-2049
Michael P. Lammert, Kevin Walkowicz, Adam Duran, Petr Sindler
This research project compares the in-use and laboratory-derived fuel economy of a medium-duty hybrid electric drivetrain with “engine off at idle” capability to a conventional drivetrain in a typical commercial package delivery application. Vehicles in this study included eleven model year 2010 Freightliner P100H hybrids that were placed in service at a United Parcel Service (UPS) facility in Minneapolis, Minn., during the first half of 2010. These hybrid vehicles were evaluated for 18 months against eleven model year 2010 Freightliner P100D diesels that were placed in service at the same facility a couple months after the hybrids. Both vehicle study groups use the same model year 2009 Cummins ISB 200 HP engine. The vehicles of interest were chosen by comparing the average daily mileage of the hybrid group to that of a similar size and usage diesel group.
2016-09-27
Technical Paper
2016-01-8053
Adime Kofi Bonsi, Marius-Dorin Surcel
Abstract The objective of this project was to provide pertinent information on the performance of refrigeration and heating transportation units to help fleets make decisions that will improve efficiency and increase productivity. To achieve this objective, tests were designed to measure the performance of selected refrigeration and heating units, mounted on refrigerated and heated van semitrailers. Cooling and freezing tests were carried out in summer conditions while heating tests were carried out in winter conditions, for various temperature settings. Two fundamental approaches were considered: the design of the refrigerated or heated trailer and the temperature setting of the refrigeration or heating unit. For cooling and freezing tests, the fuel consumption comparison between similar trailer models of different ages showed that newer units performed better than older ones.
2016-09-27
Technical Paper
2016-01-8014
David A. Schaller, Michael D. Roeth
Abstract This report provides an overview of recent technical solution adoption rates by fleets from detailed fleet surveys. Manufacturers’ contributions in terms of technology development, cost reduction, durability and refinement will also be discussed. OEM vehicle integration and product line offerings (standard, optional, and post-production upfits) are shared. All of this background will set the stage for a review of the proposed Greenhouse Gas Phase 2 regulations, the technologies expected to be utilized to meet the targets, and the hurdles the industry must successfully clear for profitable fleet use in commercial vehicle freight transportation. Fuel efficiency has always been important to fleets and as fuel costs have risen, a plethora of fuel efficient technologies have emerged. The industry also cares about sustainability and emissions reductions and now Greenhouse Gas regulations exist to further encourage development, integration and adoption of such technologies.
2015-04-14
Technical Paper
2015-01-1068
Rong Yang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Hongjuan Ren
Abstract Previous studies have indicated that longer torque increase time benefits the reduction of emissions during transient process for a diesel engine. However, quantitative conclusions on reduction of emissions and effects on fuel economy have not been made clear so far. The aim of this study was to evaluate the transient process of diesel engine under different torque increase time, and to find the quantitative statement between torque increase time, fuel economy and engine-out emissions. To do this, experiment was carried out on a 7L common rail diesel engine used for commercial vehicles. Three engine speeds (1100r·min−1, 1300r·min−1 and 1500r·min−1) were chosen to represent an engine working range. For each speed, the engine torque is increased within different time (0.5s, 1s, 2s and 5s). It was shown that, in the transient process mentioned above, engine torque increase time effects fuel economy, smoke opacity and CO emission.
2015-09-01
Technical Paper
2015-01-1780
Nobunori okui, Masayuki Kobayashi
Next-generation vehicles which include Electric Vehicles and Hybrid Electric Vehicles are studied and expected to reduce carbon dioxide emissions. The number of small delivery hybrid trucks has increased in the commercial vehicle class. The engine load of a commercial hybrid truck is reduced by using an electric motor. Fuel economy of the hybrid truck is improved with the assist. On the other hand, exhaust-gas temperature is decreased, and it has a negative effect on the purification performance of aftertreatment system. In this report, the fuel performance and emission gas characteristics of marketed small hybrid trucks were surveyed using the chassis dynamometer test system.
2015-09-01
Technical Paper
2015-01-1781
Nobuhiro Kondo, Hideyuki Takahashi, Junichi Yamada, Keiki Tanabe, Takuya Kitasei, Genichiro Ishii
A hybrid electric vehicle (HEV) system of heavy duty truck (HDT) for long haul application was studied to improve the fuel economy (FE). At first, the HEV system configuration and control functions were defined and optimized. Secondly the test vehicle was constructed and a test drive was carried out on Tomei express way, and then, 10% FE improvement compared to non-hybrid HDT was achieved. Additionally, HEV system with coasting technology, which had become attractive as a FE improvement technology for non-hybrid HDT, was considered to obtain further FE benefit. The effective usage of both “Electrical energy regeneration control” for HEV system and “Kinetic energy control” for coasting was studied with simulation. As a result, it was clarified that the effects for FE improvement depended on route profile and those combined operations advantaged for FE improvement compared to each individual operation.
2016-04-05
Technical Paper
2016-01-0314
Larry Michaels, Curtis G. Adams, Michael Juskiewicz
Abstract A simulation approach is defined that integrates a military mission assessment tool (One Semi-Automated Forces) with a commercial automotive control/energy consumption development tool (Autonomie). The objective is to enable vehicle energy utilization and fuel consumption impact assessments relative to US Army mission effectiveness and commercial drive cycles. The approach to this integration will be described, along with its potential to meet its objectives.
2015-01-14
Technical Paper
2015-26-0148
Jagadeesh Selvaraj, Dayalan Purushothaman, P T Haridas
Abstract Fuel economy is an important customer requirement which determines the position of earth-movers such as backhoe loaders in the market. Earth-movers are heavy duty machines that are used for construction works. Currently fuel consumption in earth-movers is quantified as fuel consumed per unit time (Liters per hour). Similarly, conventional measure of productivity of the earth-movers is in terms of volume of soil trenched per hour. Measurements using the above scales showed wide variations in measured fuel consumption and productivity, For the same equipment between measurements Two equipment of same make at different trench locations and Against the competitor equipment This inconsistency and lack of a proper measuring system made logical decision making extremely difficult. This paper describes the step by step procedures involved in deriving the methodology for robust fuel consumption measurement of earth-mover vehicles.
2015-09-01
Technical Paper
2015-01-2032
Kenji Yamamoto, Kazuhiro Umehara, Yukiya Moriizumi, Shinji Iino, Noriyoshi Tanaka
This study examines friction reducing and fuel economy improving performance of MoDTC with heavy duty diesel engine oil (HDDO) using several friction tests and fleet trucks. As a result, a fuel economy improvement of approximately 2 % was observed without any negative influence on the engines, and the friction reducing performance of MoDTC remained for more than 50,000km.
Viewing 1 to 30 of 357

Filter

  • Range:
    to:
  • Year: