Criteria

Text:
Display:

Results

Viewing 1 to 30 of 580
2004-10-26
Technical Paper
2004-01-2697
Leonard Kuo-Liang Shih, Tien-Chou Hsu
In the past decades, the diesel engines are considered as the major power source, not only because of their high thermal efficiency, high torque output, and easy maintenance; but also due to the improved exhaust emissions reduction technology. In order to increase the thermal efficiency, the low heat rejection ceramic coating engine is one of the possible solutions for future engine manufacturing. Due to the thermal insulating effects of the ceramic material (low thermal conductivity), the cylinder charge and engine components' temperatures are substantially increased. However, the thermal impact problem and the possible high friction characteristics of the new coating material can be deadly to the engine's lifetime. Various non-ceramic and ceramic materials are tested in this research to decide their thermal insulating effects on the engine performance and their downside on the friction and thermal impact problems.
2013-01-09
Technical Paper
2013-26-0126
Ashish Moholkar, Rizwan Khan, Jyotirmoy Barman, Sumit Arora
Increased options and flexibility in common rail direct injection provides a great opportunity for combustion optimization using fuel and air system with proper combustion chamber configuration. This paper elaborates the experimental work conducted for combustion optimization with combinations of piston bowl, intake port swirl, injector specifications and turbo charging on a 3.8 l four valve diesel engine of LDT application equipped with common rail fuel injection system and waste gate turbo charge. In meeting the target emission norms with internal engine measures, the design of the piston bowl and the nozzle configuration perform a defining role. Through simulations the best option had been carried out parametrically investigate the influence of piston bowl geometry and nozzle characteristics on the performance of the combustion system.
2013-01-09
Technical Paper
2013-26-0130
Antony Smith, Saurabh Rajauria, Sachin Agarwal
In the growing automobile world, every commercial vehicle manufacturer upgrades their product from their existing product to meet world market demand for high power engine with high torque, most fuel efficient, BS-IV and BS-V emission norms and less cost. In an Engine cylinder block and cylinder head are among the critical parts need to be modified to upgrade the existing engine platform. The VE4101 Engine is a massive 3.8 l 4 Cyl 16 valve engine based on the E483 4 cyl 8 valve engine, which is currently being mass produced in VECV, India. This engine cylinder block and cylinder head are designed with key features such as capable for high peak firing pressure, rigid load structure, curvy envelope and ribs to reduce NVH, light weight 2 split top box manufacturing method. Key strategy is used such as less capital investment in purchasing machines, no/less alteration in current machining and assembly line.
2013-10-07
Technical Paper
2013-36-0233
Matheus Ferreira, Mário Praça, Ricardo Simão
The increasing demand for engines with higher efficiency, reduced fuel consumption and high power density is driving the future engine technologies in the direction of downsizing and reduction of number of cylinders, especially for Otto engines. Specifically the Power Cell Unit (PCU) components are of extreme interest due to its potential for weight and friction reduction. To cope with these demands a new lightweight connecting rod design for flex fueled engines was developed. The combination of thinner web thickness and bushingless small end (coated and profiled), through the optimization by Finite Element Analysis (FEA) simulation, enabled on the new lightweight design a weight reduction of 25% maintaining safe connecting rod fatigue limits in a studied flex fueled engine. The connecting rod bearings were evaluated using Elasto-Hydrodynamic Lubrication (EHL) simulation, and demonstrated suitable results. The connecting rod material selected was the premium 46MnVS6 forged steel.
2013-10-07
Technical Paper
2013-36-0375
Marcos N. Schiesari, Vinícius Abrão S. Marques
Turbochargers are used in a wide range of applications, duty cycles and different vehicle usage rates in whole world. As known, the exhaust gas temperature is still a challenge to the turbochargers manufactures once it has a considerable impact in the turbocharger durability and reliability. High temperatures can lead to thermal mechanical stress, which can cause material fatigue. Extensive works have been carried out by product and combustion engineers to guarantee that temperature limits are under acceptable values. However, there are other factors that are related to the application usage in the field that can contribute to the exhaust gas temperature increase. As known, service engineers have the difficult task of identifying the reason why some components used for years in different localities fail only in certain regions, fleet or applications. Trouble shootings are often a useful guide in the investigation, but are to generic most of the cases.
2013-10-07
Technical Paper
2013-36-0312
I. Coutinho, A. Pereira, C. Sanches, M. Mottin
The internal combustion engine air intake manifold is subjected to continuous dynamic excitation due to unbalanced firing sequence and alternated movement of the pistons. An elastic anchoring for the intake manifold of Iveco's new bus was developed based on two criteria: 1. increase the natural frequency of the system to avoid coupling with engine's NEF 6 idle input and 2. minimize the vibration transmitted to the chassis. In order to solve this duality an optimization algorithm was used to fit cushion stiffness to both requirements. The system behavior is evaluated virtually in frequency domain through FRFs and its modal mode shapes and natural frequencies (eigenvectors and eigenvalues) extracted with Lanczos method.
2013-10-07
Technical Paper
2013-36-0595
Wiliam Tean Su
In the past few years, Finite Element Analysis (FEA) has become an almost essential engineering tool in product development. In addition to that, structural optimization, which is almost as old as the finite element method, is a widely used tool in engineering product design definition. One vastly used method is the shape optimization, which has as an objective the minimization of stress concentration on determined regions. In this work, a 6 cylinder diesel engine crankshaft was analyzed and a structural optimization was performed, more specifically at the web region. The interpretation of the shape optimization results led to a slightly modified geometry of the crankshaft, with the mass of the crankshaft throw only 0.5% higher than the original model. Also, the fatigue safety factor evaluation was performed for both reference and optimized crankshafts as a comparison criterion. The same boundary condition used in the shape optimization was employed for the fatigue factor evaluation.
2013-10-07
Technical Paper
2013-36-0605
Fabio B. Bassetti
Modern diesel engines for vehicular applications such as buses and other commercial vehicles are increasingly using technological resources in order to meet the pollutant emissions regulations. Among these features, the turbocharger fulfills an essential function of providing a higher air flow to the engine intake, providing a cleaner and more efficient combustion. During the application process of a turbocharger, calculations are performed to estimate the life of the compressor impeller, which takes into account the maximum shaft speed and the number of cycles that cause fatigue damage. Among these parameters, the maximum speed affects directly in the fatigue life of the impeller. Due to the different material options for the compressor impeller, the mass properties of each type of rotor may result in differences in their inertias thus impacting the maximum speed and the fatigue life calculation.
2011-09-13
Technical Paper
2011-01-2231
Khalil Dilawar Nadaf, Milind V. Kulkarni, Vijay M. Mahangade, Dr.(Prof.) S. G. Joshi
The conventional methods of connecting rod design consider the centre of gravity (CG) position at 2/3rd distance from connecting rod small end. The connecting rod CG position decides the reciprocating and rotating mass distribution. The reciprocating force impacts inertia stresses at the connecting rod small end while rotating force impacts the inertial stresses, minimum oil film thickness (MOFT) and peak oil film pressure (POFP) at the connecting rod big end. This paper work has analyzed connecting rod design in view of three probable causes of CG position variation as due to dimensional changes to sustain higher loading, manufacturing process variation and high speed of turbocharged (TC) engine. Total nine load cases have been considered for study of these causes. As well, CG variation impact is analyzed at big end bearings for MOFT and POFP.
2011-09-13
Journal Article
2011-01-2232
Marc Megel, Barry Westmoreland, Guy Jones, Ford Phillips, Douglas Eberle, Mark Tussing, NIgel Yeomans
Historically, heavy-duty diesel (HDD) engine designs have evolved along the path of increased power output, improved fuel efficiency and reduced exhaust gas emissions, driven both by regulatory and market requirements. The various technologies employed to achieve this evolution have resulted in ever-increasing engine operating cylinder pressures, higher than for any other class of internal combustion engine. Traditional HDD engine design architecture limits peak cylinder pressure (PCP) to about 200 bar (2900 psi). HDD PCP had steadily increased from the early 1970's until the mid 2000's, at which point the structural limit was reached using traditional methods and materials. Specific power output reversed its historical trend and fell at this time as a result of technologies employed to satisfy new emissions requirements, most notably exhaust gas recirculation (EGR).
2011-09-13
Technical Paper
2011-01-2230
Zhiyong Zhang
In this study, a measurement system is developed for obtaining continuous piston temperatures in a working engine by using a voltage recorder. The developed system has a very high accuracy with a measurement error within ± 1 °C. Since there is no relative movement between the measurement system and the piston, its reliability significantly increases. In order to test its accuracy and reliability, the developed measurement system is used to obtain the piston temperatures under various operating conditions with different air-fuel ratios, oil temperatures, and engine speeds. The measurement results are then used to calibrate the piston temperature field simulated by numerical analysis.
2011-09-13
Technical Paper
2011-01-2191
Alberto Boretti, Houshsng Masudi, Joseph Scalzo
The introduction of advanced internal combustion engine mechanisms and powertrains may improve the fuel conversion efficiency of an engine and thus reduce the amount of energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the induction stroke therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine. Results of vehicle driving cycle simulations of a light-duty gasoline vehicle with the advanced engine show dramatic improvements of fuel economy.
2011-08-30
Technical Paper
2011-01-1835
Harri Hillamo, Teemu Anttinen, Ulf Aronsson, Clément Chartier, Oivind Andersson, Bengt Johansson
Combination of flow field measurements, shown in this paper, give new information on the effect of engine run parameters to formation of different flow fields inside piston bowl. The measurements were carried out with particle image velocimetry (PIV) technique in optical engine. Good set of results was achieved even though the feasibility of this technique in diesel engines is sometimes questioned. Main challenge in diesel engines is background radiation from soot particles which is strong enough to conceal the PIV signal. Window staining in diesel engine is also a problem, since very high particle image quality is needed for velocity analysis. All measurements were made in an optical heavy-duty diesel engine. Optical design of engine was Bowditch type [1]. The engine was charged and equipped with exhaust gas recirculation (EGR). The exhaust gas level was monitored by oxygen concentration and the level was matched to former soot concentration measurements.
2011-04-12
Technical Paper
2011-01-0374
Junichiro Nitta, Akihiko Minato, Naoki Shimazaki
An exhaust turbocharging system makes it possible to increase the brake mean effective pressure (BMEP) and lower emissions levels for a diesel engine while further improving the thermal efficiency. However, in order to meet future emission regulations, further reductions in NOx and particle matter (PM) emissions are necessary. In addition, the diesel engine should have further reductions in fuel consumption to reduce CO₂, which is one of the main greenhouse gases. Authors participated in a program for the comprehensive technological development of innovative, next-generation, low-pollution vehicles with the New Energy and Industrial Technology Development Organization (NEDO) from 2004 through 2008 in cooperation with the National Institute of Advanced Industrial Science and Technology (AIST). A low-emission and high-efficiency diesel engine system was developed to meet the target of NEDO project.
1999-12-01
Technical Paper
1999-01-3085
Frank Leipold, Fábio Gerab, Marco A., Fogaça A.
This work reports the first stage in the experimental optimization of a medium duty truck, equipped with a new engine, with four cylinders and high power, concerning both the noise emission for the environment and the noise level in the passengers' compartment. In the first stage of this work, comparative measurements among the noise levels for vehicles in different configurations were made, in order to identify the most important sources in the vehicle's noise level, as well as to serve as indicative for project improvements. Each system configuration was analyzed separately, in order to obtain a comparative evaluation of the different vehicle configurations along the whole period of measurements.
2000-03-06
Technical Paper
2000-01-0036
Kazunari Nakahara, Katsutoshi Ohta
A cylindrical hydraulic engine mount with simple construction has been developed which has a sub chamber formed without diaphragm by utilizing air compressibility. An analysis model of the mount is presented to predict the non-linear dynamic characteristics in consideration of the effect of excitation amplitude on the dynamic stiffness and loss factor. The calculated dynamic characteristics are in good agreement with experimental results. By using the analysis model, the effect of the volume and pressure of air on the dynamic characteristics is clarified. On-vehicle test on a chassis dynamometer shows that the newly developed hydraulic engine mount has same effect on ride comfort improvement as a conventional hydraulic mount.
2011-10-04
Technical Paper
2011-36-0298
Edney Rejowski, Edmo Soares, Samantha Uehara
The demand for higher output performance engines has lead to the increase of PCP (Peak Cylinder Pressure) and more aggressive engine designs for cylinder liners, mainly for new heavy duty engines developments where low cost components are been introduced. Such trends have generated demands to adequate the liner design by improving its material properties by changing its chemical composition, new materials data or even by introducing more accurate casting manufacturing process. Therefore, there is a clear tendency to development more and more alternative solutions that combine a certain technical high-value added and low cost. The most important material properties for cylinder liners are the ultimate tensile strength (UTS) and the fatigue tensile strength. Both parameters confer to the cylinder liners, especially for wet top flanged designs, the ability to survive under high mechanical and thermal load conditions even with reduced wall thickness.
2011-06-09
Journal Article
2011-37-0004
F. Payri, J.R. Serrano, P. Piqueras, O. García-Afonso
The use of particulate filters (DPF) has become in recent years the state of the art technology for the reduction of soot aerosol emissions for light, medium and heavy duty Diesel vehicles. However, the effect of the system location on engine performance is a key aspect that should be studied. In the present work a numerical study has been carried out with the objective to analyze the effect on the engine performance of an innovative DPF placement upstream of the turbine. This study has been performed by means of the gas dynamic simulation of a two-stage turbocharged heavy duty Diesel engine, which has been previously modeled from experimental data obtained under steady state conditions. The original DPF has been divided into two monoliths for the case of the pre-turbo DPF configuration. Three cylinders discharge in each of these monoliths and after the filtration the flow is driven towards the high-pressure turbine and the EGR system.
2012-09-24
Technical Paper
2012-01-1975
Saud Binjuwair, Salah Ibrahim, Graham Wigley, Graham Pitcher
This paper deals with experimental investigations of the in-cylinder flow structures under steady state conditions utilizing Particle Image Velocimetry (PIV). The experiments have been conducted on an engine head of a pent-roof type (Lotus) for a number of fixed valve lifts and different inlet valve configurations at two pressure drops, 250mm and 635mm of H2O that correlate with engine speeds of 2500 and 4000 RPM respectively. From the two-dimensional in-cylinder flow measurements, a tumble flow analysis is carried out for six planes parallel to the cylinder axis. In addition, a swirl flow analysis is carried out for one horizontal plane perpendicular to the cylinder axis at half bore downstream from the cylinder head (44mm). The results show the advantage of using the planar technique (PIV) for investigating the complete flow structures developed inside the cylinder.
2012-09-24
Journal Article
2012-01-1992
Peter Ernst
Rising fuel prices and more stringent requirements in the field of the vehicle emissions such as nitrogen oxides, particulate matter and carbon dioxide will increase the pressure on the engine manufacturers to utilize technologies which contribute to a reduction in these emissions. As a result, interest in cylinder surface coatings has increased considerably in the last few years, also in the SUMEBore® coating solution from Sulzer Metco. SUMEBore coatings are applied by a powder-based air plasma spraying (APS) process. Such an APS process is very flexible and can also process materials to which wire-based methods do not have any access, particularly metal matrix composites and pure ceramics. The compositions can be tailored to the specific challenges in an engine, e.g., excessive abrasive wear, scuffing, corrosion caused by adulterated fuel or high exhaust gas recirculation (EGR) rates, etc.
2012-09-24
Technical Paper
2012-01-1991
Amir Ghasemi
Cyclic firing loading conditions coupled with high thermal loads are the main causes for failure of the cylinder head. A complete thermo-mechanical fatigue analysis of a cast aluminum cylinder head should include both high and low cycle fatigue. Reliable nonlinear material behavior, accurate thermo-mechanical stress analysis, and dependable failure criterion are the keys to successful life prediction. The low cycle fatigue is primarily due to thermal stress resulted from repeated start-up and shut-down cycle of the engines. The high cycle fatigue is mainly due to the firing loads, as amplitude stress, accumulated to the mean stress due to the thermal load. In this paper the required CAE simulations for high/low cycle fatigue of cylinder head will be discussed.
2012-09-24
Technical Paper
2012-01-1962
Aaron Birckett, Dean Tomazic, Stephen Bowyer, Karen Bevan, Philip Wetzel, Sean Keidel, Brandon Biller
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
2012-09-24
Technical Paper
2012-01-1963
Dimitrios Dardalis, Ronald D. Matthews, Alan O. Lebeck
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
2011-09-11
Technical Paper
2011-24-0127
Nicola Terdich, Ricardo F. Martinez-Botas, David A. Howey, Colin D. Copeland, Aaron Costall
Turbocharged diesel engines are widely used in off-road applications including construction and mining machinery, electric power generation systems, locomotives, marine, petroleum, industrial and agricultural equipment. Such applications contribute significantly to both local air pollution and CO₂ emissions and are subject to increasingly stringent legislation. To improve fuel economy while meeting emissions limits, manufacturers are exploring engine downsizing by increasing engine boost levels. This allows an increase in IMEP without significantly increasing mechanical losses, which results in a higher overall efficiency. However, this can lead to poorer transient engine response primarily due to turbo-lag, which is a major penalty for engines subjected to fast varying loads. To recover transient response, the turbocharger can be electrically assisted by means of a high speed motor/generator.
2011-09-11
Technical Paper
2011-24-0161
Katarzyna Bizon, Gaetano Continillo, Ezio Mancaruso, Bianca Maria Vaglieco
This study aims at building an efficient and robust radial basis function (RBF) artificial neural network (ANN), to reconstruct the in-cylinder pressure of a diesel engine starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. The RBF network is trained using measurements from different engine operating conditions. Training data are composed of time series from the accelerometer and corresponding measured in-cylinder pressure signals. The RBF network is then validated using data not included in training and the results show good correspondence between measured and reconstructed pressure signal. Various network parameters are used to optimize the network quality.
2016-09-27
Technical Paper
2016-01-8091
Shuanlu Zhang, ZhenFeng Zhao, Changlu Zhao, Fujun Zhang, Yuhang Liu
Abstract A new method for driving the hydraulic free piston engine is proposed. This method achieves the compression stroke automatically rather than special recovery system. Principle of hydraulic differential drive free-piston engine is analyzed and the control strategy of this novel hydraulic driving engine is also introduced. Then energy balance method is used to design the main parameters of the novel engine. High pressure and secondary high pressure of the hydraulic system are constrained by the combustion parameters and therefore parameters are analyzed. In order to verify the effectiveness of energy balance method, the mathematical model is established based on the piston force analysis and engine working principle. The transient results of dynamics are obtained through simulation. In addition, the effectiveness of the simulation is proofed by dimensionless analysis. It indicates that energy balance method realizes the basic performance of hydraulic free piston engine.
2016-09-27
Technical Paper
2016-01-8087
Xia Meng
Abstract The output power of a turbocharged diesel engine will decrease and the maximum torque point in the full load torque map will move backwards when the engine is operating at plateau.
2016-06-15
Technical Paper
2016-01-1813
Daniela Siano, Fabio Bozza
Abstract The characteristics of the intake system affect both engine power output and gas-dynamic noise emissions. The latter is particularly true in downsized VVA engines, where a less effective attenuation of the pressure waves is realized, due to the intake line de-throttling at part-load. For this engine architecture, a refined air-box design is hence requested. In this work, the Transmission Loss (TL) of the intake air-box of a commercial VVA engine is numerically computed through a 3D FEM approach. Results are compared with experimental data, showing a very good correlation. The validated model is then coupled to an external optimizer (ModeFRONTIERTM) to increase the TL parameter in a prefixed frequency range. The improvement of the acoustic attenuation is attained through a shape deformation of the inner structure of the base device, taking into account constraints related to the device installation inside the engine bay.
2015-09-29
Technical Paper
2015-01-2790
Kangcheng Wu, Gangfeng Tan, Shubo Fei, Fengming Li, Wei Mao, Yeying Li, Fei Wang, Xintong Wu, Shiqi Gong
Abstract Turbochargers can improve vehicle dynamic performance and fuel economy and are applied widely nowadays. Due to the existence of turbocharger delay effect, acceleration delay and insufficient combustion are its disadvantages. By collecting high pressure gas which generates from the inertia of the turbine in the intake passage when the vehicle slows down, the gas can be supplied for the shortage while the vehicle is accelerating, which can reduce turbocharger delay effect directly. However, turbocharger delay effect changes a little at high speed and low speed which is subjected to the air inflation and short air-release time. This paper adds a set of pressure booster device on the existing inflating-deflating device, whose thermal energy comes from the compressed air and lubricating oil, to facilitate pressure increasing in inflating-deflating device and help the chamber change sooner, which avails to relieve the delay effect.
2016-04-05
Technical Paper
2016-01-0767
Changle Li, Lianhao Yin, Sam Shamun, Martin Tuner, Bengt Johansson, Rickard Solsjo, Xue-Song Bai
Abstract An experiment was conducted to investigate the effect of charge stratification on the combustion phasing in a single cylinder, heavy duty (HD) compression ignition (CI) engine. To do this the start of injection (SOI) was changed from -180° after top dead centre (ATDC) to near top dead centre (TDC) during which CA50 (the crank angle at which 50% of the fuel energy is released) was kept constant by changing the intake temperature. At each SOI, the response of CA50 to a slight increase or decrease of either intake temperature or SOI were also investigated. Afterwards, the experiment was repeated with a different intake oxygen concentration. The results show that, for the whole SOI period, the required intake temperature to keep constant CA50 has a “spoon” shape with the handle on the -180° side.
Viewing 1 to 30 of 580

Filter

  • Range:
    to:
  • Year: