Criteria

Text:
Display:

Results

Viewing 1 to 30 of 361
2010-10-05
Technical Paper
2010-01-2039
Stargel Doane, Drew Landman, Richard M. Wood
A computer simulation was developed to investigate the effect of wind on test track estimation of heavy truck fuel efficiency. Monte Carlo simulations were run for various wind conditions, both with and without gusts, and for two different vehicle aerodynamic configurations. The vehicle configurations chosen for this study are representative of typical Class 8 tractor trailers and use wind tunnel measured drag polars for performance computations. The baseline (control) case is representative of a modern streamlined tractor and conventional trailer. The comparison (test) case is the baseline case with the addition of a trailer drag reduction device (trailer skirt). The integrated drag coefficient, overall required power, total fuel consumption, and average rate of fuel consumption were calculated for a heavy truck on an oval test track to show the effect of wind on test results.
2010-10-05
Technical Paper
2010-01-2040
Mathew Heinecke, Jeremy Beedy, Kevin Horrigan, Raja Sengupta
The importance of fuel economy and emission standards has increased rapidly with high fuel costs and new environmental regulations. This requires analysis techniques capable of designing the next generation long-haul truck to improve both fuel efficiency and cooling. In particular, it is important to have a predictive design tool to assess how exterior design changes impact aerodynamic performance. This study evaluates the use of a Lattice Boltzmann based numerical simulation and the National Research Council (NRC) Canada's wind tunnel to assess aerodynamic drag on a production Volvo VNL tractor-trailer combination. Comparisons are made between the wind tunnel and simulation to understand the influence of wind tunnel conditions on truck aerodynamic performance. The production VNL testing includes a full range of yaw angles to demonstrate the influence of cross wind on aerodynamic drag.
2011-04-12
Journal Article
2011-01-0178
Jeff Howell
Vehicles on the road operate in the turbulent flow field resulting from the combined effects of the natural wind and the wakes of other vehicles. While substantial data exists on the properties of the natural wind, much less information is available for the wake properties of road vehicles. The wake information available for road vehicle shapes is mainly restricted to the near wake region, but to understand the vehicle operating environment it is the wake downstream of this region which is of interest. To determine the range of this area of interest requires some knowledge of the decay of the wake properties. From wind tunnel studies using small simple bluff bodies in free stream and in ground proximity the principle wake properties, velocity deficit and peak turbulence intensity have been measured. The maximum velocity deficit is shown to approximately decay with x-2/3, where x is the distance downstream, while turbulence intensity decays at a slightly slower rate.
2011-04-12
Technical Paper
2011-01-0174
Lisa Larsson, Torbjörn Wiklund, Lennart Löfdahl
The aim of the study was to investigate the cooling performance of two cooling package positions for distribution vehicles by using Computational Fluid Dynamics. The first cooling package was positioned in the front of the vehicle, behind the grill and the second position was at the rear of the vehicle. Each case was evaluated by its cooling performance for a critical driving situation and its aerodynamic drag at 90 km/h, where the largest challenge of an alternative position is the cooling air availability. The geometry used was a semi-generic commercial vehicle, based on a medium size distribution truck with a heat rejection value set to a fixed typical level at maximum power for a 13 litre Euro 6 diesel engine. The heat exchangers included in the study were the air conditioning condenser, the charge air cooler and the radiator. It was found that the main problem with the rear mounted cooling installation was the combination of the fan and the geometry after the fan.
2011-04-12
Journal Article
2011-01-0162
Ming Jiang, Huaizhu Wu, Kebing Tang, Minsuk Kim, Sivapalan Senthooran, Heinz Friz, Yingzhe Zhang
The engineering process in the development of commercial vehicles is facing more and more stringent emission regulations while at the same time the market demands for better performance but with lower fuel consumption. The optimization of aerodynamic performance for reduced drag is a key element for achieving related performance targets. Closely related to aerodynamics are wind noise and cabin soiling and both of them are becoming more and more important as a quality criterion in many markets. This paper describes the aerodynamic and aero-acoustic performance evaluation of a Dongfeng heavy truck using digital simulation based on a LBM approach. It includes a study for improving drag within the design of a facelift of the truck. A soiling analysis is performed for each aerodynamic result by calculating the accumulation of particles emitted form the wheels on the cabin. One of the challenges in the development process of trucks is that different cabin types have to be designed.
2013-09-24
Technical Paper
2013-01-2417
Lisa Henriksson, Erik Dahl, Peter Gullberg, Lennart Lofdahl
This paper presents results and a Computational Fluid Dynamics (CFD) method for simulation of a detailed louvered fin for a multi-louvered compact heat-exchanger. The airflow was angled at 90°, +30° and −30° relative to the heat-exchanger to evaluate changes in static pressure drop and airflow characteristics. The investigation was based on three heat-exchangers with thicknesses of 52mm and two of 19mm. One period of a detailed louvered fin was simulated for two airflows for each heat-exchanger. The pressure drop data was thereafter compared to experimental data from a full-size heat-exchanger. From the pressure drop and the airflow characteristic results recommendations were made that those kinds of simulations could be defined as steady state, and with the kω-SST turbulence model. For the same heat-exchanger angle the airflow within the core was similar, with a turbulent characteristic behind it.
2013-09-24
Technical Paper
2013-01-2423
Rishikesh Venugopal, Neerav Abani, Ryan MacKenzie
This paper presents analytical and measured results on the effects of injection pattern design on piston thermal management in an Opposed-Piston, Two-Stroke (OP2S) diesel engine. The OP2S architecture investigated in this work comprises two opposing pistons forming an asymmetric combustion chamber with two opposing injectors mounted on the cylinder wall. This unique configuration offers opportunities to tailor the injection pattern to control the combustion heat flux and resulting temperatures on the piston surfaces while optimizing combustion simultaneously. This study utilizes three-dimensional (3D) computational fluid dynamics (CFD) with state-of-the-art spray, turbulence and combustion models that include detailed chemistry to simulate the in-cylinder combustion and the associated flame/wall interactions. In addition, the measurements comprise a real-time thermocouple system, which allows for up to 14 locations to be monitored and recorded on the intake and exhaust pistons.
2013-01-09
Technical Paper
2013-26-0043
Vignesh S, Vijay Ram C, Sachin P
Non air-conditioned buses constitute a major portion of public transportation facilities in many countries across the world. Inadequate cabin air circulation is a major cause of passenger discomfort in these buses. The aim of this study is to model the air flow pattern inside the passenger compartment of a bus and to establish the effect of solutions such as roof vents in improving the air circulation. RANS based CFD simulations with Shear Stress Transport (SST) turbulence model have been carried out using a commercial CFD solver. The CFD methodology has been verified by comparing results with experimentally validated LES simulation results available in literature. The vehicle model used in this study was the shell structure of a bus with an overall length of 7 m and a wheel base of 3.9 m. Simulations were carried out for a four vent configuration which showed an increase of 131% in the average in-cabin air velocity over the baseline model without any roof-vents.
2011-09-13
Technical Paper
2011-01-2284
Helena Martini, Björn Bergqvist, Linus Hjelm, Lennart Löfdahl
Today there are a large variety of drag-reducing devices for heavy trucks that are commonly used, for example, roof deflectors, cab side extenders and chassis fairings. These devices are often proven to be efficient, reducing the total aerodynamic resistance for the vehicle. However, the drag-reducing devices are usually identical for a specific pulling vehicle, independent of the layout of the vehicle combination. In this study, three vehicle combinations were analyzed. The total length of the vehicles varied between 10.10 m and 25.25 m. The combinations consisted of a rigid truck in combination with one or two cargo units. The size of the gap between the cargo units differed between the vehicle combinations. There were also three configurations of each vehicle combination with different combinations of roof deflector and cab side extenders, yielding a total number of nine configurations.
2011-09-13
Technical Paper
2011-01-2285
Lisa Larsson, Lennart Löfdahl, Erik Dahl, Torbjörn Wiklund
This investigation is a continuing analysis of the cooling performance and aerodynamic properties of a rear-mounted cooling module on a semi-generic commercial vehicle, which was carried out by Larsson, Löfdahl and Wiklund. In the previous study two designs of the cooling package installation were positioned behind the rear wheelhouse and the results were compared to a front-mounted cooling module. The investigation was mainly focused on a critical cooling situation occurring at lower vehicle speeds for a local distribution vehicle. The conclusion from the study was that the cooling performance for one of the rear-mounted installation was favorable compared to the front-mounted cooling package. This was mainly due to the low vehicle speed, the high fan speed and to fewer obstacles around the cooling module resulting in a lower system restriction within the installation.
2011-09-13
Technical Paper
2011-01-2286
Song Li
With the crisis of energy becoming more severity, the research of cutting down the drag of commercial vehicles is more and more important. In this work, to reduce the drag of a van body truck, aerodynamic drag reduction designs are carried out by the method of numerical simulation. Plates are fixed on the aft-body with different angle of declination. The effects of reducing drag are studied and the mechanism is discussed. The paper selects four rear add-on devices with different obliquity by 5deg, 10deg, 15deg and 20deg. Seen from the results of numerical simulation, the rear add-on device can reduce the drag effectively. The CFD simulations indicate that addition of the flat plates reduces the drag about 5∼8%. When the declination angle is 15deg, the effect is the best and the drag of the truck model is reduced by 8.9% comparing with the configuration without add-on device. This work can offer important references for the optimize design of van body truck.
1999-12-01
Technical Paper
1999-01-3009
Michael George Maunsell, Lúcio Eduardo Spinelli
A one twentieth scale model of the tractor of a Volvo truck was tested in an open circuit one tenth scale wind tunnel designed for road vehicle testing using an open jet type working section. The tests included static pressure measurements on the model surface and visualization of the flow around the model using smoke, tufts and surface oil flow for the analysis of the boundary layer flow. The results of the experimental pressure distribution were compared to those obtained for a simple theoretical model, using a first order panel method and resulted in a reasonable correlation. A first approximation, in terms of an illustrative vision of the flow around the experimental model is presented, showing the understanding of the general flow patterns on the vehicle surface and of the flow around it, as obtained from analysis of the experimental flow visualization.
2011-01-19
Technical Paper
2011-26-0106
Marella Vamsi Krishna, C. Vijay Ram
A roof fairing is a commonly used add-on for trucks or tractor-trailers, where a significant difference in height exists between the cabin and the container. A roof fairing reduces the aerodynamic drag on the vehicle by directing the onward wind flow smoothly onto the container and thus reducing flow separation in front of the container. Since standard containers are available in two different heights and there are cases when vehicles ply without load i.e. without a container, it is necessary to adjust the height of the fairing accordingly to maintain an optimum aerodynamic configuration. While adjustable fairings have been in use in the commercial vehicle industry, these fairings are usually shaped as flat plates, often with open sides for ease of folding. A highly curved and bulbous fairing helps in reducing drag better, especially in presence of side winds, although it makes adjustability difficult.
2011-10-04
Technical Paper
2011-36-0275
Luiz Carlos Gertz, André Cervieri, Antônio Flávio Aires Rodrigues, Marilia Amaral Da Silveira, Claudio Júnior Ferreto, Tiago da Costa Pelzer
This paper presents a system developed for measurement of force, based on a load cell. The aim was to design a device capable of measuring the components of the force, drag and lift, which acted over automotive spoilers. In order to enable the system to measure the drag and the lift force, it was necessary to develop a system capable of measuring only the components of interest, uncoupling efforts, such as multiple solicitations and vibration. Measurements of force were carried out over an airfoil, employing the measuring system described in this paper. The results showed that the values of the forces that acted over the airfoil were in agreement to the expected. Airfoils are used mainly in automotive racing cars to increase adherence between the tires and ground. Car prepares have made use of theirs experience to determine the best type and angle of attack for the airfoils.
2012-11-25
Technical Paper
2012-36-0632
Guilherme Zardo Selbach, Celso Cruz, Rafael Mazzorana, Gustavo Bastchen, Andre Piekarski, Rodrigo Martins, Gustavo Hindi
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
2012-09-24
Technical Paper
2012-01-1937
Yahya Oz, Berzah Ozan, Eren Uyanik
The basic scope of heavy-commercial vehicle (HCV) development which was just concentrated on fuel-economy, durability and performance feel is not capable of fulfilling the increasing customer expectations anymore. HCV developers concentrate on additional vehicle attributes such as steering, ride comfort, NVH, braking, ergonomics and exterior-interior design in order to provide the passenger-car like perception to HCV drivers during long distance drives. The objective of this paper is to present the model validation methodology and the optimization study on suspension & steering hard points of a HCV. The results of the optimization study on suspension kinematics and steering performance of the vehicle is verified using both full vehicle simulations and vehicle testing. A full vehicle ADAMS/Car model is used for the validation and optimization study which has beam-element leaf springs on solid axle and air springs on drive axle for front and rear, respectively.
2016-04-05
Technical Paper
2016-01-0571
Guillaume Bernard, Mark Scaife, Amit Bhave, David Ooi, Julian Dizy
Abstract Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
2015-09-01
Technical Paper
2015-01-1890
Ashish Shah, Per Tunestål, Bengt Johansson
The effect of pre-chamber volume and nozzle diameter on performance of pre-chamber ignition device in a heavy duty natural gas engine has previously been studied by the authors. From the analysis of recorded pre- and main chamber pressure traces, it was observed that a pre-chamber with a larger volume reduced flame development angle and combustion duration while at a given pre-chamber volume, smaller nozzle diameters provided better ignition in the main chamber. The structure of pre-chamber jet and its mixing characteristics with the main chamber charge are believed to play a vital role, and hence CFD simulations are performed to study the fluid dynamic aspects of interaction between the pre-chamber jet and main chamber charge during the period of flame development angle, i.e. before main chamber ignition. It has been observed that jets from a larger pre-chamber penetrates through the main chamber faster due to higher momentum and generates turbulence in the main chamber earlier.
2015-03-10
Technical Paper
2015-01-0022
James Keogh, Tracie Barber, Sammy Diasinos, Graham Doig
Abstract When a vehicle travels through a corner it can experience a significant change in aerodynamic performance due to the curved path of its motion. The yaw angle of the flow will vary along its length and the relative velocity of the flow will increase with distance from the central axis of its rotation. Aerodynamic analysis of vehicles in the cornering condition is an important design parameter, particularly in motorsport. Most racing-cars are designed to produce downforce that will compromise straight-line speed to allow large gains to be made in the corners. Despite the cornering condition being important, aerodynamicists are restricted in their ability to replicate the condition experimentally. Whirling arms, rotary rigs, curved test sections and bent wind tunnel models are experimental techniques capable of replicating some aspects of the cornering condition, but are all compromised solutions.
2015-09-29
Technical Paper
2015-01-2726
Balaji Lomada, N G Rajakumar, V Vijaykumar
Abstract Commercial vehicles have steering systems with one or more steering links connecting the steering gear box pitman arm and front axle steering arm. In case of twin steer vehicles, intermediate pivot arm is used to transfer the motion proportionately between the two front axles. Intermediate pivot arm is also used in some longer front over-hang vehicles to overcome their packaging constraints and to optimize the mechanical leverage. The pivot shaft is a mechanical part of the intermediate pivot arm assembly upon which pivot arm can swivel in one axis. Steering forces transferred through the drag links generates resultant forces and bending moments on the pivot shaft. In this work, study has been carried out on premature failure of the pivot shaft in city bus application model (Entry + 1 step). Metallurgical analysis of failed part indicated the failure to be due to fatigue. Pivot shaft was tested in rig with similar load conditions in order to replicate the failure.
2015-09-29
Technical Paper
2015-01-2880
Fabio Luz Almeida, Philip Zoldak, Marcos de Mattos Pimenta, Pedro Teixeira Lacava
The use of numerical simulations in the development processes of engineering products has been more frequent, since it enables prediction of premature failures and study of new promising concepts. In industry, numerical simulation has the function of reducing the necessary number of validation tests prior to spending resources on alternatives with lower likelihood of success. The internal combustion Diesel engine plays an important role in Brazil, since they are used extensively in automotive applications and commercial cargo transportation, mainly due to their relevant advantage in fuel consumption and reliability. In this case, the most critical pollutants are oxides of nitrogen (NOx) and particulate matter (PM) or soot. The reduction of their levels without affecting the engine performance is not a simple task. This paper presents a methodology for guiding the combustion analysis by the prediction of NOx emissions and soot using numerical simulation.
2015-09-29
Technical Paper
2015-01-2886
Kebing Tang, Li He, Yao Zhao, Heinz Friz, Bo Li
Abstract The development of a new Dongfeng Heavy truck had very strict targets for fuel consumption. As the aerodynamic drag plays a crucial role for the fuel consumption, a low drag value had to be achieved. It was therefore essential to include evaluation and optimization of the aerodynamics in the development process. Because wind tunnel facilities were not available, the complete aerodynamics development was based on digital simulation. The major portion of the aerodynamic optimization was carried out during the styling phase where mirrors, sun visor, front bumper and aero devices were optimized for drag reduction. For optimizing corner vanes and mud guards, self-soiling from the wheel spray was included in the analysis. The aero results did also show that cooling air flow rates are sufficiently high to ensure proper cooling. During the detailed engineering phase an increase of the drag above the target required further optimization work to finally reach the target.
2015-09-29
Technical Paper
2015-01-2892
Carlos A. Pereira, Max Morton, Claire Martin, Geert-Jan Schellekens
Abstract The current trend towards energy efficient commercial vehicles requires a substantial improvement in their aerodynamic performance. This paper describes the design methodology for a new roof fairing design with integrated ducts and the predicted effects of the final design on downstream flow. It also provides a baseline comparison with the fairing of a commercial platform and highlights the advantages of using rapid prototyping technologies to test aerodynamic improvements on commercial vehicles. By integrating into the design of a thermoplastic roof fairing ducts that divert and speed-up air flow it is possible to obtain reduction of drag in the trailer gap and alter the trailer wake favorably. The resulting decrease in yaw-averaged overall drag coefficient is of 5.8%. This translates into an improvement in fuel efficiency of 2.9% when compared to the baseline.
2016-09-27
Technical Paper
2016-01-8077
Guanyu Zheng
Selective Catalytic Reduction (SCR) has become a mainstream approach to reduce diesel engine NOx emissions. Urea Water Solution (UWS) injection and interactions with mixers and exhaust gases affect the homogeneity of ammonia distribution at catalyst inlet and solid deposits formation on walls / mixer surfaces, therefore influencing SCR performance and durability. Computational Fluid Dynamics (CFD) is used to simulate an EU V compliant SCR system with a dual baffle mixer for heavy duty diesel engines. The modeling procedure is carried out by a multi-dimensional CFD code CONVERGE that includes transient urea transport processes in an exhaust flow configuration, detailed spray break-up, evaporation, wall-film, turbulence, and Conjugate Heat Transfer (CHT) models as well as an automated mesh generation approach. Locations of urea deposits and system pressure drop are predicted and validated against measurements, providing uniformity index (UI) predictions at the catalyst inlet.
2016-09-27
Technical Paper
2016-01-8153
Prashanth Gururaja
Abstract To investigate the feasibility of various test procedures to determine aerodynamic performance for the Phase 2 Greenhouse Gas (GHG) Regulations for Heavy-Duty Vehicles in the United States, the US Environmental Protection Agency commissioned, through Southwest Research Institute, constant-speed torque tests of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Torque was measured at the transmission output shaft and, for most tests, also on each of the drive wheels. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. Measuring wind-averaged drag from on-road tests has historically been a challenge. By collecting data in various wind conditions at multiple speeds over multiple days, a regression-based method was developed to estimate wind-averaged drag with a low precision error for multiple tractor-trailer combinations.
2016-09-27
Technical Paper
2016-01-8155
Devaraj Dasarathan, Jonathan Jilesen, David Croteau, Ray Ayala
Abstract Side window clarity and its effect on side mirror visibility plays a major role in driver comfort. Driving in inclement weather conditions such as rain can be stressful, and having optimal visibility under these conditions is ideal. However, extreme conditions can overwhelm exterior water management devices, resulting in rivulets of water flowing over the a-pillar and onto the vehicle’s side glass. Once on the side glass, these rivulets and the pooling of water they feed, can significantly impair the driver’s ability to see the side mirror and to see outwardly when in situations such as changing lanes. Designing exterior water management features of a vehicle is a challenging exercise, as traditionally, physical testing methods first require a full-scale vehicle for evaluations to be possible. Additionally, common water management devices such as grooves and channels often have undesirable aesthetic, drag, and wind noise implications.
2016-09-27
Technical Paper
2016-01-8154
Abhijith Balakrishna, Gang Wang
Abstract The dynamic loading on the skin of a refrigeration unit mounted in the gap between tractor and trailer is studied while another trailer passes by on a freeway using transient computational fluid dynamics. Dynamic Meshing methodology available in Ansys Fluent was used to understand the transient pressure and flow regimes in and around the tractor trailer gap in general and refrigeration unit in particular, at various vehicle speeds. The influences of the lateral distance between the crossing trailers and vehicle speed on the pressure distribution on the refrigeration unit have been studied.
2013-11-27
Technical Paper
2013-01-2861
Vinod Dangmali, Prof.P. R. Dhamangaonkar, Anil Atnurkar
The present paper aims to present the CFD simulation of the under hood flow for Forklift Truck of 12 ton capacity. The purpose of the forklift truck is to handle the containers on marine ports. The speed of forklift truck is limited to 22km/hr. The engine selected is of 133HP @ 2300rpm. The main objective of this investigation is to evaluate the air flow assessment in the under hood compartment and to determine velocity distribution in the under hood region that will affect the cooling system performance. As Radiator, Charge Air cooler and Fan are tested at free inlet and free outlet (FIFO) conditions at supplier end these components behaves differently when assembled in vehicles. This CFD simulations will help to determine the effect on cooling performance in assembled conditions. Also recirculation zone in under hood compartment is identified which has adverse effect on engine cooling performance like reduction in cooling flow rate.
2014-03-24
Technical Paper
2014-01-2020
Jong Tae Lee, Junhong Park, Yunsung Lim, Yunjung Oh, Sungwook Park
Abstract This paper describes the effects of diverse driving modes and vehicle component characteristics impact on fuel efficiency and emissions of light commercial vehicles. The AVL's vehicle and powertrain system level simulation tool (CRUISE) was adopted in this study. The main input data such as the fuel consumption & emission map were based on the experimental value and vehicle components characteristic data (full load characteristic curves, gear shifting position curves, torque conversion curve etc.) and basic specifications (gross weight, gear ratio, tire radius etc.) were used based on the database or suggested value. The test database for two diesel vehicles adopted whether prediction accuracy of simulation data were converged in acceptable range. These data had been acquired from the portable emission measurement system, the exhaust emission and operating conditions (engine speed, vehicle speed, pedal position etc.) were acquired at each time step.
2005-11-01
Technical Paper
2005-01-3527
Charles A. Radovich
A wind tunnel experiment has been conducted to determine the changes in drag and side force due to the presence and position of cab extenders on a model of a commercial tractor-trailer truck. The geometric variables investigated are the cab extenders angle of incidence, the tractor-trailer spacing and the yaw angle of the vehicle. Three cab extender angles were tested-0°, 15° (out) and -15° (in) with respect to the side of the tractor. The cab and trailer models have the same width and height. The minimum drag coefficient was found for the tractor and trailer combination when the cab extenders were set to 0° angle of incidence with respect to the headwind. This result holds for all yaw angles with moderate gap spacing between the tractor and trailer. This study suggests that commercial tractor-trailer trucks can benefit from adjustable cab extender settings; 0° when using a trailer and -15° when no trailer is used.
Viewing 1 to 30 of 361

Filter

  • Range:
    to:
  • Year: