Refine Your Search

Topic

Author

Search Results

Standard

End Drive Adapters - Balancing Error Analysis

2017-10-24
WIP
AIR6967
This SAE Aerospace Information Report is to supplement content from ARP4163 pertaining to error analysis on the use of multiple drive adapter applications, on both vertical and horizontal balance machines. This new Aerospace Information Report will serve as a practical resource that offers guidance to the Machine Operator and Process Engineer.
Standard

Design Considerations for Hush House Facilities

2018-11-26
WIP
AIR9969
to provide industry with a reference document highlighting the necessary design considerations and configuration option for an aircraft fully enclosed test facility (Hush House).
Standard

Balancing Machines - Tooling Management, Audit, and Control

2015-12-21
WIP
ARP6898
The goal of this new document is to provide criteria for managing, auditing, and controlling the use of rotating balancing tooling and associated support tools. A variety of subjects will be addressed including serialization and marking requirements, critical inspection criteria, performance tracking through tooling compensation trend analysis, handling of gage standards (rotor simulators, master blades, dummy blades, etc.), recommendations for periodic and preventive maintenance intervals, test recommendations to evaluate rotating tooling performance, requirements for traceable measures (such as torques, runouts, eccentricity, etc.), repeatability characterization, and criteria for return to service.
Standard

Field Test Analysis Information Report

1999-12-14
CURRENT
J2372_199912
This SAE Information Report describes results of testing of the SAE J1746 ISP-Vehicle Standard for the communication of spatial data references between central sites and mobile vehicles on roads. Testing was performed by the Oak Ridge National Laboratory and its contractors, resulting in a document from which this Information Report has been extracted. Tests were performed by computer analysis and corroborated by field tests with a mobile vehicle.
Standard

SURFACE MATCH VERIFICATION METHOD FOR PRESSURE SENSITIVE ADHESIVELY ATTACHED COMPONENTS

1991-12-01
HISTORICAL
J2215_199112
This SAE Recommended Practice applies to evaluation of the conformance match condition existing between two surfaces. Evaluation of this conformance may be especially useful in bonded applications although it may also have relevance to bolted adjacent surface joint conditions. Since good bonding surface conformity is necessary for providing optimal bond performance with pressure sensitive adhesives, the purpose of this document is to provide a method of evaluating the conformance match of the mating surfaces. This document is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this document. Tool types, materials, application tools, and component contact area evaluation methods are included as part of this document.
Standard

Surface Match Verification Method for Pressure Sensitive Adhesively Attached Components

2021-01-07
CURRENT
J2215_202101
This SAE Recommended Practice applies to evaluation of the conformance match condition existing between two surfaces. Evaluation of this conformance may be especially useful in bonded applications although it may also have relevance to bolted adjacent surface joint conditions. Since good bonding surface conformity is necessary for providing optimal bond performance with pressure sensitive adhesives, the purpose of this document is to provide a method of evaluating the conformance match of the mating surfaces. This document is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this document. Tool types, materials, application tools, and component contact area evaluation methods are included as part of this document.
Standard

Torque Ratings for Power Take-off Mounting Pads

2003-07-25
HISTORICAL
J2662_200307
This SAE Recommended Practice is intended to serve as a reference for the amount of torque that a Power Take-Off can induce on the transmission mounting pad. This document will apply to six-bolt, eight-bolt, and rear mounted power take-offs.
Standard

H-III5F Spine Box Update to Eliminate Noise

2022-05-09
CURRENT
J2915_202205
This SAE Information Report documents the problems with the 2002 regulated version of the spine box and defines a recommended solution to resolve the problem.
Standard

Linear Impact Procedure for Occupant Ejection Protection

2016-04-28
HISTORICAL
J2937_201604
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
Standard

Linear Impact Procedure for Occupant Ejection Protection

2021-10-08
CURRENT
J2937_202110
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
Standard

Automotive Air-Conditioning Service Ports Final Report, Recommendations

2022-05-02
CURRENT
J3266_202205
The scope of this SAE Information Report is an evaluation of the ports and tools used on automotive air-conditioning systems to evacuate and charge systems with approved refrigerants during vehicle service. A task force was formed in April 2021 to perform this evaluation and concluded its work in September 2021. The scope of the task force was to evaluate issues being reported from service repair shops with air-conditionings service ports and the tools being used to connect to these ports. The task force also evaluated published SAE J Standards and discovered many of these standards did not include the necessary requirements for service ports and tools. The task force published a final report of its findings and recommendations. The report includes recommendations to correct and publish new SAE Standards related to the scope of this project.
Standard

Sintered Tool Materials

2017-12-20
CURRENT
J1072_201712
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
Standard

SINTERED TOOL MATERIALS

1977-02-01
HISTORICAL
J1072_197702
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
Standard

Mechanical Systems Physics-of-Failure Analysis Experimental Validation

2016-08-04
CURRENT
J2869_201608
This report details continuing work examining the fatigue life durability of a US Army Trailer. This report describes, through example, a process to evaluate and reduce the experimental data needed for a Mechanical Systems Physics-of-Failure analysis. In addition the report describes the process used to validate the computer simulation models.
Standard

Mechanical Systems Physics-of-Failure Analysis Experimental Validation

2010-08-30
HISTORICAL
J2869_201008
This report details continuing work examining the fatigue life durability of a US Army Trailer. This report describes, through example, a process to evaluate and reduce the experimental data needed for a Mechanical Systems Physics-of-Failure analysis. In addition the report describes the process used to validate the computer simulation models.
Standard

Mayday Industry Survey Information Report

1998-09-01
CURRENT
J2352_199809
This SAE Information Report is a summary of information obtained by way of survey conducted during the 2Q and 3Q of 1997 of MAYDAY system manufacturers. The data represented here has been condensed from the original survey that was conducted by telephone interviews and faxes. The information contained within is limited to technical data as it pertains to vehicle and on-board MAYDAY system operations. It does not contain business, marketing, or any proprietary technical information. The complete survey results are in the possession of the SAE. The purpose of this survey was to determine whether the general concept and architecture on which the SAE J2313 MAYDAY Message Set was being developed is consistent with those of current MAYDAY system hardware manufacturers. The survey was not intended for MAYDAY service providers or public service answer points and emergency service providers.
X