Refine Your Search

Topic

Search Results

Journal Article

Effects of Reflux Temperature and Molarity of Acidic Solution on Chemical Functionalization of Helical Carbon Nanotubes

2017-09-19
Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.
Standard

Air Cycle Air Conditioning Systems for Air Vehicles

2019-08-20
CURRENT
AS4073B
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Optimization of Pneumatic Network Actuators with Isosceles Trapezoidal Chambers

2019-10-04
Abstract Soft actuators with pneumatic network have innovative potential applications in medical and rehabilitation areas. The performance of this kind of actuators is determined by the design of chambers and the properties of the active extensible layer and the passive inextensible layer. In this article, actuator with isosceles trapezoidal chambers is proposed. Orthogonal experiment design and finite element method are used to optimize the structure of actuators. Results indicate that adding constrain-limiting paper in the passive layer can significantly reduce the bending radius. Position of the paper in the passive layer also affects the bending radius. Actuators with trapezoidal chambers can have a smaller bending radius compared with that with rectangle chambers. The bending radius decreases as the ratio of short base to long base of trapezoid decreases. Increasing the number density of chambers can further reduce the bending radius.
Journal Article

Algorithm Development for Avoiding Both Moving and Stationary Obstacles in an Unstructured High-Speed Autonomous Vehicular Application Using a Nonlinear Model Predictive Controller

2020-10-19
Abstract The advancement in vision sensors and embedded technology created the opportunity in autonomous vehicles to look ahead in the future to avoid potential obstacles and steep regions to reach the target location as soon as possible and yet maintain vehicle safety from rollover. The present work focuses on developing a nonlinear model predictive controller (NMPC) for a high-speed off-road autonomous vehicle, which avoids undesirable conditions including stationary obstacles, moving obstacles, and steep regions while maintaining the vehicle safety from rollover. The NMPC controller is developed using CasADi tools in the MATLAB environment. The CasADi tool provides a platform to formulate the NMPC problem using symbolic expressions, which is an easy and efficient way of solving the optimization problem. In the present work, the vehicle lateral dynamics are modeled using the Pacejka nonlinear tire model.
Journal Article

Development and Optimization of Formation Flying for Unmanned Aerial Vehicles Using Particle Swarm Optimization Based on Reciprocal Velocity Obstacles

2022-09-23
Abstract In this article, a formation flying technique designed for a multiple unmanned aerial vehicles (multi-UAV) system to provide low-cost and efficient solution for civilian and military applications is presented. First, a modular leader-follower formation algorithm was developed to accomplish the formation flying with off-the-shelf low-cost components and sensors. Second, a proportional-integral-derivative (PID) controller was utilized for velocity control of the UAVs to maintain the tight formation. Third, a particle swarm optimization-optimized reciprocal velocity obstacles (PSO-RVO) algorithm was utilized for obstacles avoidance and collision avoidance between the UAVs while navigating, with the aid of sonar ranging sensors onboard. The formation flying algorithm developed was tested through both simulation and experiment using two quadcopters with global positioning system (GPS) signals.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories

2018-04-03
2018-01-0623
After manufacture, every military vehicle experiences a unique history of dynamic loads, depending on loads carried, missions completed, etc. Damage accumulates in vehicle structures and components accordingly, leading eventually to failures that can be difficult to anticipate, and to unpredictable consequences for mission objectives. The advent of simulation-based fatigue life prediction tools opens a path to Digital Twin based solutions for tracking damage, and for gaining control over vehicle reliability. An incremental damage updating feature has now been implemented in the Endurica CL fatigue solver with the aim of supporting such applications for elastomer components. The incremental updating feature is demonstrated via the example of a simple transmission mount component. The damage state of the mount is computed as it progresses towards failure under a series of typical loading histories.
Journal Article

Nonlinear Multi-Fidelity Bayesian Optimization: An Application in the Design of Blast Mitigating Structures

2022-03-29
2022-01-0790
A common scenario in engineering design is the availability of several black-box functions that describe an event with different levels of accuracy and evaluation cost. Solely employing the highest fidelity, often the most expensive, black-box function leads to lengthy and costly design cycles. Multi-fidelity modeling improves the efficiency of the design cycle by combining information from a small set of observations of the high-fidelity function and large sets of observations of the low-fidelity, fast-to-evaluate functions. In the context of Bayesian optimization, the most popular multi-fidelity model is the auto-regressive (AR) model, also known as the co-kriging surrogate. The main building block of the AR model is a weighted sum of two Gaussian processes (GPs). Therefore, the AR model is well suited to exploit information generated by sources that present strong linear correlations.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Research Report

Unsettled Topics on Nondestructive Testing of Additively Manufactured Parts in the Mobility Industry

2020-09-29
EPR2020017
Additive manufacturing (AM) technology, also known as 3D printing, has transitioned from concepts and prototypes to part-for-part substitution and the creation of unique AM-specific part geometries. These applications are increasingly present in demanding, mission-critical fields such as medicine and aerospace, which require materials with certain thermal, stiffness, corrosion, and static loading properties. To advance in these arenas, metallic, ceramic, and polymer composite AM parts need to be free from discontinuities. The manufacturing processes have to be stable, robust, and repeatable. And the nondestructive testing (NDT) technology and inspection methods will need to be sufficiently capable and reliable to ensure that discontinuities will be detected to prevent the components from being accepted for use. As the second installment of a six-part series of SAE EDGE™ Research Reports on AM, this one discusses the need, challenges, technologies, and opportunities for NDT in AM.
Research Report

Internal Boundaries of Metal Additive Manufacturing: Future Process Selection

2022-03-11
EPR2022006
In the early days, there were significant limitations to the build size of laser powder bed fusion (L-PBF) additive manufacturing (AM) machines. However, machine builders have addressed that drawback by introducing larger L-PBF machines with expansive build volumes. As these machines grow, their size capability approaches that of directed energy deposition (DED) machines. Concurrently, DED machines have gained additional axes of motion which enable increasingly complex part geometries—resulting in near-overlap in capabilities at the large end of the L-PBF build size. Additionally, competing technologies, such as binder jet AM and metal material extrusion, have also increased in capability, albeit with different starting points. As a result, the lines of demarcation between different processes are becoming blurred.
Technical Paper

Numerical Analysis of Lightweight Materials and their Combinations to Understand their Behaviour against High Pressure Shock Loading

2023-05-25
2023-28-1311
Materials play a key role in our day to day life and have shaped the industrial revolution to a great extent. Right selection of material for meeting a particular objective is the key to success in today’s world where the cost as well as sustainability of any equipment or a system have assumed greater significance than ever before. In automotive industry, materials have a definitive role as far as the mobility and safety is concerned. Materials that can absorb the required energy or impact can be manufactured through different manufacturing as well as metallurgical processes which involves appropriate heat treatment and bringing correct chemical compositions etc. However, they can also be formed by simpler methods such as combining certain materials together in the form of layered combinations to form light weight composites.
Technical Paper

Design and Development of Fuel Tank for High Mobility Military Vehicle

2023-05-25
2023-28-1342
Fuel tank is considered as safety component in the vehicle, and it has to be tested to meet the safety requirements as per AIS 095. Earlier, fuel tanks were manufactured by using Hot dipped cold rolled steel material and the weld zones are applied with Anti-corrosive coating. Few fuel tanks were reported with Corrosion problems. The root cause analysis was carried out considering the raw material, manufacturing process, transpiration, storage and usage. As an improvement, the new fuel tank is designed to eliminate the limitations of the existing fuel tank. 3D modeling was done to check space and mounting requirement in the layout and used for volume calculations. FE analysis was performed to check structural stability. Emphasis given on Interchange-ability to cater the new fuel tanks in place of old as spares requirement. The fuel tank has developed with Alumina steel material.
Training / Education

Metals Bundle

Anytime
Almost 75% of all elements are metals. Metals can be classified as either ferrous or non-ferrous and generally conduct electricity and heat well. Most metals are malleable and ductile and are, in general, heavier than other elemental substances. The following six eLearning courses are included in the Materials bundle. Each course is approximately one-hour in duration. See topics/outline for additional details. Introduction to Metals, Ferrous Metals, Nonferrous Metals, Classification of Steel, Essentials of Heat Treatment of Steel Exotic Alloys
Journal Article

A Novel Flight Dynamics Modeling Using Robust Support Vector Regression against Adversarial Attacks

2023-03-24
Abstract An accurate Unmanned Aerial System (UAS) Flight Dynamics Model (FDM) allows us to design its efficient controller in early development phases and to increase safety while reducing costs. Flight tests are normally conducted for a pre-established number of flight conditions, and then mathematical methods are used to obtain the FDM for the entire flight envelope. For our UAS-S4 Ehecatl, 216 local FDMs corresponding to different flight conditions were utilized to create its Local Linear Scheduled Flight Dynamics Model (LLS-FDM). The initial flight envelope data containing 216 local FDMs was further augmented using interpolation and extrapolation methodologies, thus increasing the number of trimmed local FDMs of up to 3,642. Relying on this augmented dataset, the Support Vector Machine (SVM) methodology was used as a benchmarking regression algorithm due to its excellent performance when training samples could not be separated linearly.
X