Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Top Land Crevice and Piston Deflection Effects on Combustion in a High Speed Rotary Valve Engine

2008-12-02
2008-01-3005
The Bishop Rotary Valve (BRV) has the opportunity for greater breathing capacity than conventional poppet valve engines. However the combustion chamber shape is different from conventional engine with no opportunity for a central spark plug. This paper reports the development of a combustion analysis and design model using KIVA-3V code to locate the ignition centers and to perform sensitivity analysis to several design variables. Central to the use of the model was the tuning of the laminar Arrhenius model constants to match the experimental pressure data over the speed range 13000-20000 rpm. Piston ring crevices lands and valve crevices is shown to be an important development area and connecting rod piston stretch has also been accommodated in the modeling. For the proposed comparison, a conventional 4 valve per cylinder poppet valve engine of nearly equal IMEP has been simulated with GT-POWER.
Technical Paper

On the Advantages of E100 Over Gasoline in Down-Sized, Turbo-Charged, Direct-Injected, Variable Valve Actuated, and Stoichiometric S.I. Engines

2011-10-06
2011-28-0020
Current flexi fuel gasoline and ethanol engines have efficiencies generally lower than dedicated gasoline engines. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger top brake efficiencies than gasoline, while variable valve actuation produces small penalties in efficiency changing the load.
Technical Paper

Design of the Fiat Auto Corse ITC 96 Racing Engine - Part I: Valve Lift Profiles and Timings

1998-02-01
980124
The paper describes the fluid dynamic design of the 2.5 liter V6 engine developed by Fiat Auto Corse for the 1996 International Touring Car Series (690 engine). The paper enters into details concerning the definition of valve lift profiles and timings, and provides highlights on the configuration able to optimize the engine in its overall complexity.
X