Refine Your Search

Search Results

Viewing 1 to 11 of 11
Standard

Recommended Practice for Electric, Fuel Cell and Hybrid Electric Vehicle Crash Integrity Testing

2014-01-10
CURRENT
J1766_201401
Electric, Fuel Cell and Hybrid vehicles may contain many types of high voltage systems. Adequate barriers between occupants and the high voltage systems are necessary to provide protection from potentially harmful electric current and materials within the high voltage system that can cause injury to occupants of the vehicle during and after a crash. This SAE Recommended Practice is applicable to Electric, Fuel Cell and Hybrid vehicle designs that are comprised of at least one vehicle propulsion voltage bus with a nominal operating voltage greater than 60 and less than 1,500 VDC, or greater than 30 and less than 1,000 VAC. This Recommended Practice addresses post-crash electrical safety, retention of electrical propulsion components and electrolyte spillage.
Standard

RECOMMENDED PRACTICE FOR ELECTRIC AND HYBRID ELECTRIC VEHICLE BATTERY SYSTEMS CRASH INTEGRITY TESTING

1998-06-01
HISTORICAL
J1766_199806
Electric and Hybrid Electric Vehicles contain many types of battery systems. Adequate barriers between occupants and battery systems are necessary to provide protection from potentially harmful factors and materials within the battery system that can cause injury to occupants of the vehicle during a crash. This SAE Recommended Practice is applicable to all Electric Vehicle and Hybrid Electric Vehicle battery designs, including those described in SAE J1797. The potentially harmful factors and materials addressed by this document include electrical isolation integrity, electrolyte spillage, and retention of the battery system.
Standard

Recommended Practice for Electric and Hybrid Electric Vehicle Battery Systems Crash Integrity Testing

2005-04-20
HISTORICAL
J1766_200504
Electric, Fuel Cell and Hybrid vehicles may contain many types of high voltage systems. Adequate barriers between occupants and the high voltage systems are necessary to provide protection from potentially harmful electric current and materials within the high voltage system that can cause injury to occupants of the vehicle during a crash. This SAE Recommended Practice is applicable to all Electric, Fuel Cell and Hybrid vehicle designs that are comprised of at least one voltage bus with a nominal voltage greater than or equal to 60 Volts DC or 30 VAC. This Recommended Practice addresses electrical isolation integrity, electrolyte spillage, and retention of the battery system.
Standard

RECOMMENDED PRACTICE FOR ELECTRIC AND HYBRID ELECTRIC VEHICLE BATTERY SYSTEMS CRASH INTEGRITY TESTING

1996-02-01
HISTORICAL
J1766_199602
Electric and Hybrid Electric Vehicles contain many types of battery systems. Adequate barriers between occupants and battery systems are necessary to provide protection from potentially harmful factors and materials within the battery system, which can cause injury to occupants of the vehicle during different crash scenarios. This SAE Recommended Practice is applicable to all Electric Vehicle and Hybrid Electric Vehicle battery designs including those in SAE J1797. The potentially harmful factors and materials include electrical isolation integrity, electrolyte spillage and liquid interactions, and retention of the battery system. Maintaining electrical isolation of the system is important to prevent hazardous shock of vehicle occupants. Electrolyte spillage and battery fluid interactions should be minimized to prevent chemical reactions and electrical conductance. The latter could lead to an electrical shock hazard.
Standard

Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks

2022-09-16
CURRENT
J2601/3_202209
This document establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel Hydrogen Powered Industrial Trucks (HPITs). It also describes several example fueling methods for gaseous hydrogen dispensers serving HPIT vehicles. SAE J2601-3 offers performance based fueling methods and provides guidance to fueling system builders as well as suppliers of hydrogen powered industrial trucks and operators of the hydrogen powered vehicle fleet(s). This fueling protocol for HPITs can support a wide range of hydrogen fuel cell hybrid electric vehicles including fork lifts, tractors, pallet jacks, on and off road utility, and specialty vehicles of all types. The mechanical connector geometry for H25 and H35 connectors are defined in SAE J2600 Compressed Hydrogen Surface Vehicle Refueling Connection Devices.
Standard

Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks

2013-06-12
HISTORICAL
J2601/3_201306
This document establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel Hydrogen Powered Industrial Trucks (HPITs). It also describes several example fueling methods for gaseous hydrogen dispensers serving HPIT vehicles. SAE J2601-3 offers performance based fueling methods and provides guidance to fueling system builders as well as suppliers of hydrogen powered industrial trucks and operators of the hydrogen powered vehicle fleet(s). This fueling protocol for HPITs can support a wide range of hydrogen fuel cell hybrid electric vehicles including fork lifts, tractors, pallet jacks, on and off road utility, and specialty vehicles of all types. The mechanical connector geometry for H25 and H35 connectors are defined in SAE J2600 Compressed Hydrogen Surface Vehicle Refueling Connection Devices.
Standard

Standard for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles

2018-06-15
HISTORICAL
J2579_201806
The purpose of this document is to define design, construction, operational, and maintenance requirements for hydrogen fuel storage and handling systems in on-road vehicles. Performance-based requirements for verification of design prototype and production hydrogen storage and handling systems are also defined in this document. Complementary test protocols (for use in type approval or self-certification) to qualify designs (and/or production) as meeting the specified performance requirements are described. Crashworthiness of hydrogen storage and handling systems is beyond the scope of this document. SAE J2578 includes requirements relating to crashworthiness and vehicle integration for fuel cell vehicles. It defines recommended practices related to the integration of hydrogen storage and handling systems, fuel cell system, and electrical systems into the overall Fuel Cell Vehicle.
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2023-01-09
CURRENT
J2578_202301
This SAE Recommended Practice identifies and defines requirements relating to the safe integration of the fuel cell system, the hydrogen fuel storage and handling systems (as defined and specified in SAE J2579) and high voltage electrical systems into the overall Fuel Cell Vehicle. The document may also be applied to hydrogen vehicles with internal combustion engines. This document relates to the overall design, construction, operation and maintenance of fuel cell vehicles.
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2009-01-12
HISTORICAL
J2578_200901
This SAE Recommended Practice identifies and defines the preferred technical guidelines relating to the safe integration of fuel cell system, the hydrogen fuel storage and handling systems as defined and specified in SAE J2579, and electrical systems into the overall Fuel Cell Vehicle. This document relates to the overall design, construction, operation and maintenance of fuel cell vehicles.
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2014-08-26
HISTORICAL
J2578_201408
This SAE Recommended Practice identifies and defines requirements relating to the safe integration of the fuel cell system, the hydrogen fuel storage and handling systems (as defined and specified in SAE J2579) and high voltage electrical systems into the overall Fuel Cell Vehicle. The document may also be applied to hydrogen vehicles with internal combustion engines. This document relates to the overall design, construction, operation and maintenance of fuel cell vehicles.
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2002-12-11
HISTORICAL
J2578_200212
This SAE Recommended Practice identifies and defines the preferred technical guidelines relating to the safe integration of fuel cell system, fuel storage, and electrical systems into the overall Fuel Cell Vehicle.
X