Refine Your Search

Search Results

Viewing 1 to 5 of 5
Standard

Definition for Particle Size

2011-06-01
CURRENT
J391_201106
"Effective particle or domain size" is a phrase used in X-ray diffraction literature to describe the size of the coherent regions within a material which are diffracting. Coherency in this sense means diffracting as a unit. Small particle size causes X-ray line broadening and as such can be measured. It has been shown related to substructure as observed in transmission electron microscopy. Particle size is affected by hardening, cold working, and fatigue; conversely, there is increasing evidence that particle size, per se, affects both static and dynamic strength.
Standard

DEFINITION FOR PARTICLE SIZE

1981-07-01
HISTORICAL
J391_198107
"Effective particle or domain size" is a phrase used in X-ray diffraction literature to describe the size of the coherent regions within a material which are diffracting. Coherency in this sense means diffracting as a unit. Small particle size causes X-ray line broadening and as such can be measured. It has been shown related to substructure as observed in transmission electron microscopy. Particle size is affected by hardening, cold working, and fatigue; conversely, there is increasing evidence that particle size, per se, affects both static and dynamic strength.
Standard

DEFINITIONS FOR MACROSTRAIN AND MICROSTRAIN

1985-08-01
HISTORICAL
J932_198508
In the analysis and measurement of residual stresses of materials, it has been noted that there are frequently differences in interpretation of the terms "macrostrain" and "microstrain." To assist communication among research personnel in this area, definitions for these two terms are suggested by the Fatigue Design and Evaluation Committee of SAE. Since "macrostress" is commonly computed from "macrostrain" in residual stress analysis, to be consistent, the definitions given are for "macrostrain" and "microstrain."
Standard

Definitions for Macrostrain and Microstrain

2011-08-04
CURRENT
J932_201108
In the analysis and measurement of residual stresses of materials, it has been noted that there are frequently differences in interpretation of the terms "macrostrain" and "microstrain." To assist communication among research personnel in this area, definitions for these two terms are suggested by the Fatigue Design and Evaluation Committee of SAE. Since "macrostress" is commonly computed from "macrostrain" in residual stress analysis, to be consistent, the definitions given are for "macrostrain" and "microstrain."
Standard

Shot Peening Coverage Determination

2023-01-13
CURRENT
J2277_202301
This SAE Recommended Practice provides procedures for determining shot peening coverage and relating coverage to part exposure to the media stream. Effectiveness of shot peening is directly dependent on coverage. Inadequate or excessive coverage can be detrimental to fatigue strength and component life.
X