Refine Your Search

Search Results

Viewing 1 to 15 of 15
Standard

xEV Labels to Assist First and Second Responders, and Others

2017-03-02
CURRENT
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

Energy Transfer System for Electric Vehicles - Part 1: Functional Requirements and System Architectures

2014-02-26
CURRENT
J2293/1_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Energy Transfer System for Electric Vehicles - Part 2: Communication Requirements and Network Architecture

2014-02-26
CURRENT
J2293/2_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Use Cases for Communication between Plug-in Vehicles and Off-Board DC Charger

2011-09-15
HISTORICAL
J2836/2_201109
This SAE Information Report SAE J2836/2™ establishes use cases and general information for communication between plug-in electric vehicles and the DC Off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This applies to the off-board DC charger for conductive charging, which supplies DC current to the vehicle battery of the electric vehicle through a SAE J1772™ Hybrid coupler or SAE J1772™ AC Level 2 type coupler on DC power lines, using the AC power lines or the pilot line for PLC communication, or dedicated communication lines that is further described in SAE J2847/2. The specification supports DC energy transfer via Forward Power Flow (FPF) from grid-to-vehicle. The relationship of this document to the others that address PEV communications is further explained in section 5.
Standard

Hybrid Electric Vehicle (HEV) & Electric Vehicle (EV) Terminology

2008-02-01
HISTORICAL
J1715_200802
This SAE Information Report contains definitions for HEV and EV terminology. It is intended that this document be a resource for those writing other HEV and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2022-09-30
CURRENT
J1715_202209
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2021-05-28
HISTORICAL
J1715_202105
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2015-01-23
HISTORICAL
J2990/2_201501
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2020-11-04
CURRENT
J2990/2_202011
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
Standard

Guidelines for Electric Vehicle Safety

2020-10-13
CURRENT
J2344_202010
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for vehicles that contain High Voltage (HV), such as Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV), Fuel Cell Vehicles (FCV) and Plug-In Fuel Cell Vehicles (PFCV) during normal operation and charging, as applicable. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues.
Standard

Hybrid and EV First and Second Responder Recommended Practice

2012-11-19
HISTORICAL
J2990_201211
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into 3 categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
Standard

Hybrid and EV First and Second Responder Recommended Practice

2019-07-29
CURRENT
J2990_201907
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into three categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration, and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement. Lithium ion (Li-ion) batteries used for vehicle propulsion power are the assumed battery system of this RP.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2017-10-13
HISTORICAL
J1772_201710
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2016-02-03
HISTORICAL
J1772_201602
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2012-10-15
HISTORICAL
J1772_201210
This SAE Recommended Practice covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
X