Refine Your Search

Topic

Search Results

Journal Article

An Eyellipse for Rear Seats with Fixed Seat Back Angles

2011-04-12
2011-01-0596
This paper describes the development of the fixed seat eyellipse in the October 2008 revision of SAE Recommended Practice J941. The eye locations of 23 men and women with a wide range of stature were recorded as they sat in each of three second-row bench seats in a laboratory mockup. Testing was conducted at 19-, 23-, and 27-degree seat back angles. Regression analysis demonstrated that passenger eye location was significantly affected by stature and by seat back angle. The regression results were used to develop an elliptical approximation of the distribution of adult passenger eye locations, applying a methodology previously used to develop the driver eyellipse in SAE J941-2002.
Journal Article

Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

2013-04-08
2013-01-0452
Seat comfort is driven in part by the fit between the sitter and seat. Traditional anthropometric data provide little information about the size and shape of the torso that can be used for backrest design. This study introduces a methodology for using three-dimensional computer models of the human torso based on a statistical analysis of body shapes for conducting automated fit assessments. Surface scan data from 296 men and 417 women in a seated posture were analyzed to create a body shape model that can be adjusted to a range of statures, body shape, and postures spanning those typical of vehicle occupants. Finite-element models of two auto seat surface were created, along with custom software that generates body models and postures them in the seat. A simple simulation technique was developed to rapidly assess the fit of the torso relative to the seat back.
Technical Paper

An Investigation of Driver Discomfort and Related Seat Design Factors in Extended-Duration Driving

1991-02-01
910117
A study of automotive seating comfort and related design factors was conducted, utilizing subjective techniques of seat comfort assessment and objective measures of the seat/subject interaction. Eight male subjects evaluated four different test seats during a short-term seating session and throughout a three-hour driving simulation. For the latter, subjects operated a static laboratory driving simulator, performing body-area discomfort evaluations at thirty-minute intervals. Cross-modality matching (CMM), a subjective assessment technique in which a stimulus is rated by matching to the level of another stimulus, was used during the long-term driving simulation to evaluate discomfort. Subject posture, muscle activity in the lower back and abdomen, and pressure levels at key support locations on the seat were monitored. In addition, a sonic digitizing system was used to record seat indentation contours and to characterize the subjects' spinal contours.
Journal Article

Distribution of Belt Anchorage Locations in the Second Row of Passenger Cars and Light Trucks

2013-04-08
2013-01-1157
Seat belt anchorage locations have a strong effect on occupant protection. Federal Motor Vehicle Safety Standard (FMVSS) 210 specifies requirements for the layout of the anchorages relative to the seating reference point and seat back angle established by the SAE J826 H-point manikin. Sled testing and computational simulation has established that belt anchorage locations have a strong effect on occupant kinematics, particularly for child occupants using the belt as their primary restraint. As part of a larger study of vehicle geometry, the locations of the anchorage points in the second-row, outboard seating positions of 83 passenger cars and light trucks with a median model year of 2005 were measured. The lower anchorage locations spanned the entire range of lap belt angles permissible under FMVSS 210 and the upper anchorages (D-ring locations) were distributed widely as well.
Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Assessing the Importance of Motion Dynamics for Ergonomic Analysis of Manual Materials Handling Tasks using the AnyBody Modeling System

2007-06-12
2007-01-2504
Most current applications of digital human figure models for ergonomic assessments of manual tasks focus on the analysis of a static posture. Tools available for static analysis include joint-specific strength, calculation of joint moments, balance maintenance capability, and low-back compression or shear force estimates. Yet, for many tasks, the inertial loads due to acceleration of body segments or external objects may contribute significantly to internal body forces and tissue stresses. Due to the complexity of incorporating the dynamics of motion into analysis, most commercial software packages used for ergonomic assessment do not have the capacity to include dynamic effects. Thus, commercial human modeling packages rarely provide an opportunity for the user to determine if a static analysis is sufficient.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Comparison of ATD and Driver Knee Positions

2009-04-20
2009-01-0390
Contact between the knees and knee bolster commonly occurs in frontal collisions. The contact region on the bolster and the knee anatomy involved are related to the pre-crash positioning of the knees. The location of the distal (or infra-) patella was recorded on volunteers of widely varying stature after they had selected a comfortable driving position in mockups of three vehicles representing a large variation in size and shape: sedan, crossover SUV, and full-size pickup. On average, the right knees were grouped more tightly and were located more forward and lower than the left knees. On average, the knees were positioned 200 mm from the knee bolster for all subjects. The range of distance separating the distal patellae (within subject knee-to-knee distance) varied from 184–559 mm for all subjects for the three vehicles.
Technical Paper

Methods for In-Vehicle Measurement of Truck Driver Postures

2001-11-12
2001-01-2821
Effective application of human figure models to truck interior design requires accurate data on the postures and positions of truck drivers. Errors in positioning of figure models propagate to errors in reach, visibility, and other analyses. This paper describes methods used in a recent study to measure in-vehicle driving postures in Class 6, 7, and 8 trucks. A three-dimensional coordinate measurement machine was used to measure body landmark locations after a driver completed a short road course. The data were used to validate posture-prediction models developed in a previous laboratory study. Vehicle calibration, driver selection, and testing methods are reviewed.
Technical Paper

Effects of Seat and Sitter Dimensions on Pressure Distribution in Automotive Seats

2017-03-28
2017-01-1390
Seat fit is characterized by the spatial relationship between the seat and the vehicle occupant’s body. Seat surface pressure distribution is one of the best available quantitative measures of this relationship. However, the relationships between sitter attributes, pressure, and seat fit have not been well established. The objective of this study is to model seat pressure distribution as a function of the dimensions of the seat and the occupant’s body. A laboratory study was conducted using 12 production driver seats from passenger vehicles and light trucks. Thirty-eight men and women sat in each seat in a driving mockup. Seat surface pressure distribution was measured on the seatback and cushion. Relevant anthropometric dimensions were recorded for each participant and standardized dimensions based on SAE J2732 (2008) were acquired for each test seat.
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

An Improved Seating Accommodation Model with Application to Different User Populations

1998-02-23
980651
A new approach to driver seat-position modeling is presented. The equations of the Seating Accommodation Model (SAM) separately predict parameters of the distributions of male and female fore/aft seat position in a given vehicle. These distributions are used together to predict specific percentiles of the combined male-and-female seat-position distribution. The effects of vehicle parameters-seat height, steering-wheel-to-accelerator pedal distance, seat-cushion angle, and transmission type-are reflected in the prediction of mean seat position. The mean and standard deviation of driver population stature are included in the prediction for the mean and standard deviation of the seat-position distribution, respectively. SAM represents a new, more flexible approach to predicting fore/aft seat-position distributions for any driver population in passenger vehicles. Model performance is good, even at percentiles in the tails of the distribution.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
Technical Paper

Lumbar Support in Auto Seats: Conclusions from a Study of Preferred Driving Posture

1996-02-01
960478
Prominent, longitudinally convex lumbar supports are frequently recommended for auto seats based on the assumption that such supports will induce sitters to choose postures with substantial lumbar lordosis. Lumbar lordosis has been associated with reduced spine loading as measured by pressure in the intervertebral disks. Data from a laboratory study of the influence of lumbar support on driving posture demonstrate that, on average, lumbar lordosis is not strongly affected by large increases in lumbar support prominence. These findings, and their implications for seat design, are reviewed.
Technical Paper

Distribution of Automobile Trip Durations for Studies of Seat Comfort

1996-02-01
960476
Data from the 1990 U.S. Nationwide Personal Transportation Survey were analyzed to determine the distribution of trip durations and sitting times for use in the design of automobile seat comfort studies. Two measures relating to the incidence and prevalence of long-term sitting were calculated and presented for the U.S. population and various subgroups. The information can be used to select an appropriate test duration for comfort studies. The subgroup data allow the test duration to be tailored for specific market segments.
Technical Paper

Torso Kinematics in Seated Reaches

2004-06-15
2004-01-2176
Simulations of humans performing seated reaches require accurate descriptions of the movements of the body segments that make up the torso. Data to generate such simulations were obtained in a laboratory study using industrial, auto, and truck seats. Twelve men and women reached to push-button targets located throughout their right-hand reach envelopes as their movements were recorded using an electromagnetic tracking system. The data illustrate complex patterns of motion that depend on target location and shoulder range of motion. Pelvis motion contributes substantially to seated reach capability. On padded seats, the effective center of rotation of the pelvis is often within the seat cushion below the pelvis rather than at the hips. Lumbar spine motions differ markedly depending on the location of the target. A categorization of reach targets into four zones differentiated by torso kinematics is proposed.
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

Comparison of Methods for Predicting Automobile Driver Posture

2000-06-06
2000-01-2180
Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This paper presents an alternative method for driver posture prediction using data-guided kinematic optimization. The within-subject conditional distributions of joint angles are used to infer the internal cost functions that guide tradeoffs between joints in adapting to different vehicle configurations. The predictions from the two models are compared to in-vehicle driving postures.
X