Refine Your Search

Topic

Search Results

Standard

Rotorcraft Installed Power Available Verification

2020-12-02
WIP
AIR6920
This document presents Flight Test Techniques, Data Analysis Methods, and Reporting examples related to installed turbine Power Available and Power Assurance demonstrations as required by CFR Title 14 Part 29.45(c) and (f).
Standard

GENERAL CONSIDERATIONS FOR ROTORCRAFT INLET BARRIER FILTER INSTALLATIONS

2018-12-04
WIP
AIR6980
This Aerospace Information Report (AIR) identifies considerations on power available and inlet distortion for rotorcraft with Inlet Barrier Filter (IBF) installations. This document provides a more in-depth understanding of the physics behind power available and inlet distortion characterization for rotorcraft with Inlet Barrier Filter (IBF) installations, including case studies and calculation examples. It is intended to support the methods of compliance to power available and inlet distortion requirements for rotorcraft with Inlet Barrier Filter (IBF) installations recommended in ARP6912.
Standard

Cockpit Information Required for Helicopter Turbine Engine Operation and Maintenance

2022-03-29
WIP
AIR1963B
This SAE Aerospace Information Report (AIR) identifies Propulsion EngineerÕs recommendations for the instrumentation that is required for the safe operation and maintenance of turbine engines as installed in helicopters. It should be used as a guide for cockpit layout, as well as a reference for maintenance considerations throughout the propulsion area. Propulsion instruments should receive attention early in the design phase of the helicopter. Maintenance and diagnostics recorders are not considered within the scope of this document. (See ARP1587, "Aircraft Gas Turbine Engine Monitoring System Guide".)
Standard

Cockpit Information Required for Helicopter Turbine Engine Operation and Maintenance

1997-06-01
CURRENT
AIR1963A
This SAE Aerospace Information Report (AIR) identifies Propulsion Engineer’s recommendations for the instrumentation that is required for the safe operation and maintenance of turbine engines as installed in helicopters. It should be used as a guide for cockpit layout, as well as a reference for maintenance considerations throughout the propulsion area. Propulsion instruments should receive attention early in the design phase of the helicopter. Maintenance and diagnostics recorders are not considered within the scope of this document. (See ARP1587, “Aircraft Gas Turbine Engine Monitoring System Guide”.)
Standard

Helicopter Engine-Rotor System Compatibility

2021-03-10
CURRENT
ARP704A
This SAE Aerospace Recommended Practice (ARP) recommends a methodology to be used for the design, analysis and test evaluation of modern helicopter gas turbine propulsion system stability and transient response characteristics. This methodology utilizes the computational power of modern digital computers to more thoroughly analyze, simulate and bench-test the helicopter engine/rotor system speed control loop over the flight envelope. This up-front work results in significantly less effort expended during flight test and delivers a more effective system into service. The methodology presented herein is recommended for modern digital electronic propulsion control systems and also for traditional analog and hydromechanical systems.
Standard

A Method of Ground Resonance Testing for Helicopters

1985-01-01
CURRENT
AIR883
(This document supersedes and cancels AIR 12) 'Ground resonance' is a term which originated in the early days of autogiro development in this country. It is a somewhat ambiguous term as the conditions it describes usually occur at the ground but do not have any association with the common expression 'ground effect'. However, the troubles usually associated with 'ground resonance' do occur when the ship is on or near the ground.
Standard

Helicopter Fuel Economy Evaluation

2022-02-23
WIP
AS1516A
The purpose of this standard is to provide a method of evaluating helicopter fuel economy which accounts for the significant technical variables in helicopter and powerplant design.
Standard

Helicopter FUEL Economy Evaluation

1998-02-01
CURRENT
AS1516
The purpose of this standard is to provide a method of evaluating helicopter fuel economy which accounts for the significant technical variables in helicopter and powerplant design.
Standard

CONCURRENT DESIGN OF ENGINES AND SPECIFICATIONS OF STARTING SYSTEMS FOR HELICOPTERS

2020-01-31
CURRENT
AIR1296
It is recommended that all helicopter engine development programs include an evaluation of engine starting requirements. The evaluation should include starting requirement effects on helicopter weight, cost, and mission effectiveness. The evaluation should be appropriate to the engine stage of development.
Standard

Oil Systems for Helicopter Powerplants

2022-01-13
WIP
AIR4281A
Turbine engines installed in helicopters require a highly sophisticated oil system to fulfill two tasks: a. Cooling/oil supply b. Lubrication. While lubrication is an engine internal procedure, cooling and oil supply require more or less design activity on the aircraft side of the engine/airframe interface for proper engine function, depending on the engine type. The necessity for engine cooling and oil supply provisions on the airframe can lead to interface problems because the helicopter manufacturer can influence engine related functions due to the design of corresponding oil system components. This SAE Aerospace Information Report (AIR) deals with integration of engine oil systems with the airframe and gives information for both helicopter and engine manufacturers for a better understanding of interface requirements.
Standard

ENGINE EXHAUST SYSTEM DESIGN CONSIDERATIONS FOR ROTORCRAFT

2021-03-11
CURRENT
ARP4056
Turbine engines installed in rotorcraft have an exhaust system that is designed and produced by the aircraft manufacturer. The primary function of the exhaust system is to direct hot exhaust gases away from the airframe. The exhaust system may consist of a tailpipe, which is attached to the engine, and an exhaust fairing, which is part of the rotorcraft. The engine manufacturer specifies a baseline "referee" tailpipe design, and guaranteed engine performance is based upon the use of the referee tailpipe and tailpipe exit diameter. The configuration used on the rotocraft may differ from the referee tailpipe, but it is intended to minimize additional losses attributed to the installation. This Aerospace Recommended Practice (ARP) describes the physical, functional, and performance interfaces to be considered in the design of the aircraft exhaust system.
Standard

Helicopter Mission Definition

2022-02-23
WIP
ARP1352A
The purpose of this recommended practice is to establish a standard format for the presentation of helicopter mission data, which will provide data required to establish airframe and/or engine component life.
Standard

Helicopter Mission Definition

1997-12-01
CURRENT
ARP1352
The purpose of this recommended practice is to establish a standard format for the presentation of helicopter mission data, which will provide data required to establish airframe and/or engine component life.
X