Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Analysis of Knock Tendency in a Small VVA Turbocharged Engine Based on Integrated 1D-3D Simulations and Auto-Regressive Technique

2014-04-01
2014-01-1065
In the present paper, two different methodologies are adopted and critically integrated to analyze the knock behavior of a last generation small size spark ignition (SI) turbocharged VVA engine. Particularly, two full load operating points are selected, exhibiting relevant differences in terms of knock proximity. On one side, a knock investigation is carried out by means of an Auto-Regressive technique (AR model) to process experimental in-cylinder pressure signals. This mathematical procedure is used to estimate the statistical distribution of knocking cycles and provide a validation of the following 1D-3D knock investigations. On the other side, an integrated numerical approach is set up, based on the synergic use of 1D and 3D simulation tools. The 1D engine model is developed within the commercial software GT-Power™. It is used to provide time-varying boundary conditions (BCs) for the 3D code, Star-CD™.
Technical Paper

Efficient Thermal Electric Skipping Strategy Applied to the Control of Series/Parallel Hybrid Powertrain

2020-04-14
2020-01-1193
The optimal control of hybrid powertrains represents one of the most challenging tasks for the compliance with the legislation concerning CO2 and pollutant emission of vehicles. Most common off-line optimization strategies (Pontryagin minimum principle - PMP - or dynamic programming) allow to identify the optimal control along a predefined driving mission at the expense of a quite relevant computational effort. On-line strategies, suitable for on-vehicle implementation, involve a certain performance degradation depending on their degree of simplification and computational effort. In this work, a simplified control strategy is presented, where the conventional power-split logics, typical of the above-mentioned strategies, is here replaced with an alternative utilization of the thermal and electric units for the vehicle driving (Efficient Thermal Electric Skipping Strategy - ETESS).
Journal Article

Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine

2016-04-05
2016-01-0545
It is widely recognized that spatial and temporal evolution of both macro- and micro- turbulent scales inside internal combustion engines affect air-fuel mixing, combustion and pollutants formation. Particularly, in spark ignition engines, tumbling macro-structure induces the generation of a proper turbulence level to sustain the development and propagation of the flame front. As known, 3D-CFD codes are able to describe the evolution of the in-cylinder flow and turbulence fields with good accuracy, although a high computational effort is required. For this reason, only a limited set of operating conditions is usually investigated. On the other hand, thanks to a lower computational burden, 1D codes can be employed to study engine performance in the whole operating domain, despite of a less detailed description of in-cylinder processes. The integration of 1D and 3D approaches appears hence a promising path to combine the advantages of both.
Journal Article

Unsteady 1D Simulation of a Turbocharger Compressor

2009-04-20
2009-01-0308
The one-dimensional (1D) modeling of a turbocharged engine requires the availability of the turbine and compressor characteristic maps. This leads to two main problems: performance maps of the turbocharger device are usually limited to a reduced number of rotational speeds, pressure ratios and mass flow rates. Extrapolation of maps’ data is commonly required; performance maps are experimentally derived on stationary test benches, while the turbocharger usually operates under unsteady conditions, when coupled to an internal combustion engine (ICE). To overcome the above problems, in the present paper the flow inside a rotating pipe of a centrifugal compressor is simulated within a 1D modeling approach, with the aim of predicting its characteristic map. The main improvement with respect to the employment of a steady experimental map consists in the absence of data extrapolation and in the possibility of fully characterizing the unsteady operation of the component.
Technical Paper

Steady-State and Transient Operation Simulation of a “Downsized” Turbocharged SI Engine

2007-04-16
2007-01-0381
The paper reports the research activity related to the development of a “downsized” turbocharged Spark-Ignition (SI) engine. Both experimental and theoretical analyses are carried out to characterize the performance of this engine architecture, and particularly to analyze the matching conditions with the turbocharger and the combustion process at wide-open-throttle conditions. To this aim, a quasi-dimensional model for the simulation of the burning process is included as an external user-defined routine in a commercial 1D simulation code (GT-Power®). The rate of heat release is computed through a two-zone model, based on a “fractal” representation of the turbulent flame front. A turbulence sub-model is included and it is properly tuned with respect to turbulence results computed by a 3D CFD code. A CAD procedure evaluating, at each crank-angle and flame radius, the intersections between the flame surface and the actual combustion chamber walls, is also presented.
Technical Paper

Experimental and Numerical Analyses for the Characterization of the Cyclic Dispersion and Knock Occurrence in a Small-Size SI Engine

2010-09-28
2010-32-0069
In this paper, an experimental and numerical analysis of combustion process and knock occurrence in a small displacement spark-ignition engine is presented. A wide experimental campaign is preliminarily carried out in order to fully characterize the engine behavior in different operating conditions. In particular, the acquisition of a large number of consecutive pressure cycle is realized to analyze the Cyclic Variability (CV) effects in terms of Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV). The spark advance is also changed up to incipient knocking conditions, basing on a proper definition of a knock index. The latter is estimated through the decomposition and the FFT analysis of the instantaneous pressure cycles. Contemporary, a quasi-dimensional combustion and knock model, included within a whole engine one-dimensional (1D) modeling framework, are developed. Combustion and knock models are extended to include the CV effects, too.
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part I: 3D Analyses

2018-04-03
2018-01-0850
Recently, a growing interest in the development of more accurate phenomenological turbulence models is observed, since this is a key pre-requisite to properly describe the burn rate in quasi-dimensional combustion models. The latter are increasingly utilized to predict engine performance in very different operating conditions, also including unconventional valve control strategies, such as EIVC or LIVC. Therefore, a reliable phenomenological turbulence model should be able to physically relate the actuated valve strategy to turbulence level during the engine cycle, with particular care in the angular phase when the combustion takes place.
X