Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Changes to Fim-Motogp Rules to Reduce Costs and Make Racing More Directly Relevant to Road Motorcycle Development

2008-12-02
2008-01-2957
The specific power densities and therefore the level of sophistication and costs of FIM-MOTOGP engines 800 cm3 in capacity have reached levels similar to those of the traditionally much more expensive FIA-Formula One engines and some racing developments have no application at all in the development of production bikes. The aim of the paper is therefore to review FIM-MOTOGP engine rules and make recommendations that could reduce costs and make racing more directly relevant to the development of production bikes while enhancing the significant interest in technical innovation by the sports' fans.
Technical Paper

Parametric Design of FIA F1 Engines

2002-12-02
2002-01-3315
The paper compares V10 F1 engine solutions developed in compliance with the 2001 FIA Technical Regulations. Similarity rules and non dimensional parameters from previous projects are used to define geometric and operating parameters for partly similar engine solutions basically differing in the bore/stroke ratio. Five different bore values are considered, B=94, 96, 98, 100 and 102 mm, thus producing bore/stroke ratios B/S=2.176, 2.319, 2.465, 2.621 and 2.779 respectively. Results are presented as computed classical engine outputs versus engine speed, including brake, indicated and friction values. By increasing the bore size, both power output and engine speed for maximum power operation increase. Conversely, only engine speed increases while torque output reduces for maximum torque operation. By using the sharpest car acceleration criteria, the engine with bore B=98 mm reaches the highest score.
Technical Paper

Parametric Design of FIM WGP Engines

2002-12-02
2002-01-3317
The paper compares Road Racing World Championship Grand Prix (WGP) engine solutions developed in compliance with the 2002 Federation Internationale de Motocyclisme (FIM) Technical Regulations. Ad-hoc assumptions, similarity rules and nondimensional parameters from previous projects are used to define geometric and operating parameters for partly similar engine solutions basically differing in the number of cylinders, three, four, five or six, and the cylinder layout, in-line or V-angle. Results are shown as computed classical engine outputs versus engine speed, including brake, indicated and friction values. By increasing the number of cylinders, charging efficiency reduces, while thermal efficiency increases. Higher values of brake torque and power and lower values of brake specific fuel consumption are provided by the V-angle six cylinder engine.
X