Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion – Part II: Optical Engine Results

2009-04-20
2009-01-1106
The effect that thermally and compositionally stratified flowfields have on the spatial progression of iso-octane-fueled homogeneous charge compression ignition (HCCI) combustion were directly observed using highspeed chemiluminescence imaging. The stratified in-cylinder conditions were produced by independently feeding the intake valves of a four-valve engine with thermally and compositionally different mixtures of air, vaporized fuel, and argon. Results obtained under homogeneous conditions, acquired for comparison to stratified operation, showed a small natural progression of the combustion from the intake side to the exhaust side of the engine, a presumed result of natural thermal stratification created from heat transfer between the in-cylinder gases and the cylinder walls. Large differences in the spatial progression of the HCCI combustion were observed under stratified operating conditions.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Journal Article

Multiple-Event Fuel Injection Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0925
The objective of this research is a detailed investigation of multiple injections in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the performance and emissions benefits of multiple injections via experiments and simulations in a 0.48L signal cylinder light-duty engine operating at 2000 r/min and 5.5 bar IMEP. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2]. This study examines the effects of fuel split distribution, injection event timing, rail pressure, and boost pressure which are each explored within a defined operation range in LTC.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Journal Article

Experimental Investigation of Transient Response and Turbocharger Coupling for High and Low Pressure EGR Systems

2014-04-01
2014-01-1367
The transient response of an engine with both High Pressure (HP) and Low Pressure (LP) EGR loops was compared by conducting step changes in EGR fraction at a constant engine speed and load. The HP EGR loop performance was shown to be closely linked to turbocharger performance, whereas the LP EGR loop was relatively independent of turbocharger performance and vice versa. The same experiment was repeated with the variable geometry turbine vanes completely open to reduce turbocharger action and achieve similar EGR rate changes with the HP and LP EGR loops. Under these conditions, the increased loop volume of the LP EGR loop prolonged the response of intake O2 concentration following the change in air-fuel ratio. The prolonged change of intake O2 concentration caused emissions to require more time to reach steady state as well. Strong coupling between the HP EGR loop and turbochargers was again observed using a hybrid EGR strategy.
Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Journal Article

Analysis of Deviations from Steady State Performance During Transient Operation of a Light Duty Diesel Engine

2012-04-16
2012-01-1067
Deviations between transient and steady state operation of a modern light duty diesel engine were identified by comparing rapid load transitions to steady state tests at the same speeds and fueling rates. The validity of approximating transient performance by matching the transient charge air flow rate and intake manifold pressure at steady state was also assessed. Results indicate that for low load operation with low temperature combustion strategies, transient deviations of MAF and MAP from steady state values are small in magnitude or short in duration and have relatively little effect on transient engine performance. A new approximation accounting for variations in intake temperature and excess oxygen content of the EGR was more effective at capturing transient emissions trends, but significant differences in magnitudes remained in certain cases indicating that additional sources of variation between transient and steady state performance remain unaccounted for.
Technical Paper

Data from a Variable Rate Shape High Pressure Injection System Operating in an Engine Fed Constant Volume Combustion Chamber

1990-10-01
902082
In current systems, for a given nozzle and injection pressure (pump speed), the shape of the injection rate is fixed and the injection timing is the only variable the engine designer can vary. For this non-interactive injection system, changing the injector nozzle (number and diameter of holes) will proportionately change the injection shape. New injection systems in which the rate of injection is a controlled variable are being developed. Results from one such injector, called the UCORS (Universal Combustion Optimization and Rate Shaping), are reported in this paper. The system can dynamically control its injection rate shape by controlling the position and size of a pilot injection relative to the main injection. Data and analysis from an out-of-engine and combustion chamber study of the UCORS injection system are presented.
Technical Paper

Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine

2007-04-16
2007-01-0193
There is a significant global effort to study low temperature combustion (LTC) as a tool to achieve stringent emission standards with future light duty diesel engines. LTC utilizes high levels of dilution (i.e., EGR > 60% with <10%O2 in the intake charge) to reduce overall combustion temperatures and to lengthen ignition delay, This increased ignition delay provides time for fuel evaporation and reduces in-homogeneities in the reactant mixture, thus reducing NOx formation from local temperature spikes and soot formation from locally rich mixtures. However, as dilution is increased to the limits, HC and CO can significantly increase. Recent research suggests that CO emissions during LTC result from the incomplete combustion of under-mixed fuel and charge gas occurring after the premixed burn period [1, 2]1. The objective of the present work was to increase understanding of the HC/CO emission mechanisms in LTC at part-load.
Technical Paper

A Computational Analysis of Direct Fuel Injection During the Negative Valve Overlap Period in an Iso-Octane Fueled HCCI Engine

2007-04-16
2007-01-0227
This computational study compares predictions and experimental results for the use of direct injected iso-octane fuel during the negative valve overlap (NVO) period to achieve HCCI combustion. The total fuel injection was altered in two ways. First the pre-DI percent, (the ratio of direct injected fuel during the NVO period “pre-DI” to the secondary fuel supplied at the intake manifold “PI”), was varied at a fixed pre-DI injection timing, Secondly the timing of the pre-DI injection was varied while all of the fuel was supplied during the NVO period. A multi-zone, two-dimensional CFD simulation with chemistry was performed using KIVA-3V release 2 implemented with the CHEMKIN solver. The simulations were performed during the NVO period only.
Technical Paper

Experimental Investigation into the Effects of Direct Fuel Injection During the Negative Valve Overlap Period in an Gasoline Fueled HCCI Engine

2007-04-16
2007-01-0219
A single cylinder Yamaha research engine was operated with gasoline HCCI combustion using negative valve overlap (NVO). The injection strategy for this study involved using fuel injected directly into the cylinder during the NVO period (pre-DI) along with a secondary injection either in the intake port (PI) or directly into the cylinder (DI). The effects of timing of the pre-DI injection along with the percent of fuel injected during the pre-DI injection were studied in two sets of experiments using secondary PI and DI injections in separate experiments. Results have shown that by varying the pre-DI timing and pre-DI percent the main HCCI combustion timing can be influenced as a result of varied heat release during the negative valve overlap period along with hypothesized varied degrees of reformation of the pre-DI injected fuel. In addition to varying the main combustion timing the ISFC, emissions and combustion stability are all influenced by changes in pre-DI timing and percent.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Modeling of Soot Formation During DI Diesel Combustion Using a Multi-Step Phenomenological Model

1998-10-19
982463
Predictive models of soot formation during Diesel combustion are of great practical interest, particularly in light of newly proposed strict regulations on particulate emissions. A modified version of the phenomenological model of soot formation developed previously has been implemented in KIVA-II CFD code. The model includes major generic processes involved in soot formation during combustion, i.e., formation of soot precursors, formation of surface growth species, soot particle nucleation, coagulation, surface growth and oxidation. The formulation of the model within the KIVA-II is fully coupled with the mass and energy balances in the system. The model performance has been tested by comparison with the results of optical in-cylinder soot measurements in a single cylinder Cummins NH Diesel engine. The predicted soot volume fraction, number density and particle size agree reasonably well with the experimental data.
Technical Paper

A Computational Investigation into the Cool Flame Region in HCCI Combustion

2004-03-08
2004-01-0552
Multi-dimensional computational efforts using comprehensive and skeletal kinetics have been made to investigate the cool flame region in HCCI combustion. The work was done in parallel to an experimental study that showed the impact of the negative temperature coefficient and the cool flame on the start of combustion using different fuels, which is now the focus of the simulation work. Experiments in a single cylinder CFR research engine with n-butane and a primary reference fuel with an octane number of 70 (PRF 70) were modeled. A comparison of the pressure and heat release traces of the experimental and computational results shows the difficulties in predicting the heat release in the cool flame region. The behavior of the driving radicals for two-stage ignition is studied and is compared to the behavior for a single-ignition from the literature. Model results show that PRF 70 exhibits more pronounced cool flame heat release than n-butane.
Technical Paper

Sensitivity Analysis of a Diesel Exhaust System Thermal Model

2004-03-08
2004-01-1131
A modeling study has been conducted in order to characterize the heat transfer in an automotive diesel exhaust system. The exhaust system model, focusing on 2 exhaust pipes, has been created using a transient 1-D engine flow network simulation program. Model results are in excellent agreement with experimental data gathered before commencement of the modeling study. Predicted pipe exit stream temperatures are generally within one percent of experimental values. Sensitivity analysis of the model was the major focus of this study. Four separate variables were chosen for the sensitivity analysis. These being the external convective heat transfer coefficient, external emissivity, mass flow rate of exhaust gases, and amplitude of incoming pressure fluctuations. These variables were independently studied to determine their contribution to changes in exhaust gas stream temperature and system heat flux. There are two primary benefits obtained from conducting this analysis.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

Expanding the HCCI Operation With the Charge Stratification

2004-03-08
2004-01-1756
A single cylinder CFR research engine has been run in HCCI combustion mode at the rich and the lean limits of the homogeneous charge operating range. To achieve a variation of the degree of charge stratification, two GDI injectors were installed: one was used for generating a homogeneous mixture in the intake system, and the other was mounted directly into the side of the combustion chamber. At the lean limit of the operating range, stratification showed a tremendous improvement in IMEP and emissions. At the rich limit, however, the stratification was limited by the high-pressure rise rate and high CO and NOx emissions. In this experiment the location of the DI injector was in such a position that the operating range that could be investigated was limited due to liquid fuel impingement onto the piston and liner.
Technical Paper

The Effect of Intake Air Temperature, Compression Ratio and Coolant Temperature on the Start of Heat Release in an HCCI (Homogeneous Charge Compression Ignition) Engine

2001-12-01
2001-01-1880
In this paper, effect of intake air temperature, coolant temperature, and compression ratio on start of heat release (SOHR) in HCCI engines is investigated. The operational range with HCCI operation was determined experimentally using a CFR (Cooperative Fuels Research) engine with n-butane as the fuel. In-cylinder pressure was processed to evaluate SOHR. The effect of intake air and coolant temperature on SOHR increases as engine speed increases. In order to gain more insight into the combustion phenomena, SOHR was calculated using the theory of Livengood-Wu and compared with the experimental data. Dependence of SOHR on the equivalence ratio shows good correspondence between experiment and calculation. On the contrary, dependence on the intake air temperature and compression ratio shows poorer correspondence with predictions, especially under low engine speed. We interpret this as an indication of the importance of the active intermediate species that remain in the combustion chamber.
Technical Paper

An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics

2002-10-21
2002-01-2830
A single cylinder CFR research engine has been run in HCCI combustion mode for a range of temperatures and fuel compositions. The data indicate that the best HCCI operation, as measured by a combination of successful combustion with low ISFC, occurs at or near the rich limit of operation. Analysis of the pressure and heat release histories indicated the presence, or absence, and impact of the fuel's NTC ignition behavior on establishing successful HCCI operation. The auto-ignition trends observed were in complete agreement with previous results found in the literature. Furthermore, analysis of the importance of the fuel's octane sensitivity, through assessment of an octane index, successfully explained the changes in the fuels auto-ignition tendency with changes in engine operating conditions.
Technical Paper

In-Cylinder Measurement of Particulate Radiant Heat Transfer in a Direct Injection Diesel Engine

2003-03-03
2003-01-0072
A method of determining the total hemispherical in-cylinder radiant heat transfer of a direct injection diesel engine was developed using the Two Color theory. A radiant probe was installed in the head of a single cylinder test engine version of a Cummins N14 diesel engine to facilitate the optical measurement. Two probes, installed one at a time, were used to provide the data to calculate the hemispherical radiant heat flux. Each of the probes had a different field of view but both had a near-hemispherical field of view and used a window material that exhibits a cosine-normalized response. The radiant probes were designed to be self-cleaning and remained free of soot deposits during engine operation at high load. The test engine was operated at 1200 and 1500 RPM and at 50, 75, and 100% load for each engine speed. At each operating combination of engine speed and load, measurements were made at several injection timings.
X