Refine Your Search

Topic

Search Results

Technical Paper

Condensation of Fuel on Combustion Chamber Surfaces as a Mechanism for Increased HC Emissions from SI Engines During Cold Start

1997-10-01
972884
Condensation of fuel vapor on the cold surfaces within the combustion chamber is investigated as a possible mechanism for increased HC emissions from SI engines during cold start. A one-dimensional, transient, mass diffusion analysis is used to examine the condensation of single-species fuels on the surfaces of the combustion chamber as the pressure within the cylinder rises during compression and combustion, and re-vaporization during expansion, blowdown, and exhaust. The effects of wall temperature, fuel volatility, and engine load and speed on this mechanism are also discussed. This analysis shows that low-volatility fuel components can condense on the surfaces of the combustion chamber when the surface temperatures are sufficiently low. This condensed fuel may re-vaporize during the power and exhaust strokes, or it may remain in the combustion chamber until surface temperatures rise, perhaps tens of seconds later.
Technical Paper

The Effects of Fuel Composition, System Design, and Operating Conditions on In-System Vaporization and Hot Start of a Liquid-Phase LPG Injection System

1998-05-04
981388
A liquid-phase port injection system for liquefied petroleum gas (LPG) generally consists of a fuel storage tank with extended capability of operating up to 600 psi, a fuel pump, and suitable fuel lines to and from the LPG fuel injectors mounted in the fuel rail manifold. Port injection of LPG in the liquid phase is attractive due to engine emissions and performance benefits. However, maintaining the LPG in the liquid phase at under-hood conditions and re-starting after hot soak can be difficult. Multiphase behavior within a liquid-phase LPG injection system was investigated computationally and experimentally. A commercial chemical equilibrium code (ASPEN PLUS™) was used to model various LPG compositions under operating conditions.
Technical Paper

Improved Passage Design for a Spark Plug Mounted Pressure Transducer

2007-04-16
2007-01-0652
Combustion chamber pressure measurement in engines via a passage is an old technique that is still widely used in engine research. This paper presents improved passage designs for an off-set electrode spark plug designed to accept a pressure transducer. The spark plug studied was the Champion model 304-063A. Two acoustic models were developed to compute the resonance characteristics. The new designs have a resonance frequency in a range higher than the fundamental frequency expected from knock so that the signal can be lowpass filtered to remove the resonance and not interfere with pressure signal components associated with combustion phenomena. Engine experiments verified the spark plug resonance behavior. For the baseline engine operating condition approximately 50 of 100 cycles had visible passage resonance in the measured pressure traces, at an average frequency of 8.03 kHz.
Technical Paper

The Texas Project, Part 4 - Final Results: Emissions and Fuel Economy of CNG and LPG Conversions of Light-Duty Vehicles

1998-10-19
982446
The Texas Project was a multi-year study of aftermarket conversions of a variety of light-duty vehicles to CNG or LPG. Emissions and fuel economy when using these fuels are compared to the results for the same vehicles operating on certification gasoline and Federal Phase 1 RFG. Since 1993, 1,040 tests were conducted on 10 models, totally 86 light-duty vehicles. The potential for each vehicle model/kit combination to attain LEV certification was assessed. Also, comparisons of emissions and fuel economy between converted vehicles when operating on gasoline and nominally identical un-converted gasoline control vehicles were analyzed. Additional evaluations were performed for a subfleet that was subjected to exhaust speciations for operation over the Federal Test Procedure cycle and also for off-cycle tests.
Technical Paper

The Texas Project, Part 5 - Economic Analysis: CNG and LPG Conversions of Light-Duty Vehicle Fleets

1998-10-19
982447
The Texas Project was a multi-year study of aftermarket conversions of a variety of light-duty vehicles to CNG or LPG. One aspect of this project was to examine the factors that influence the economics of fleet conversions to these alternative fuels. The present analysis did not include longer-term effects (such as possible increases in exhaust system life or increases in tire wear). Additionally, assumptions were required to estimate the costs of repairs to the alternative fuel system and engine. Other factors considered include conversion cost, fuel prices, annual alternative fuel tax (as applied for the state of Texas), annual miles accumulated, and the percent miles traveled while using the alternative fuel for dual fuel conversions.
Technical Paper

The Texas Diesel Fuels Project, Part 3: Cost-Effectiveness Analyses for an Emulsified Diesel Fuel for Highway Construction Equipment Fleets

2004-03-08
2004-01-0086
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel as an emissions control measure in July 2002. They initiated a study of the effectiveness of this fuel in comparison to conventional diesel fuel for TxDOT's Houston District operations and included the fleet operated by the Associated General Contractors (AGC) in the Houston area. Cost-effectiveness analyses, including the incremental cost per ton of NOx removed, were performed. NOx removal was the focus of this study because Houston is an ozone nonattainment area, and NOx is believed to be the limiting factor in ozone formation in the Houston area. The cost factors accounted for in the cost-effectiveness analyses included the incremental cost of the fuel (including an available rebate from the State of Texas), the cost of refueling more often, implementation costs, productivity costs, maintenance costs, and various costs associated with the tendency of the emulsion to separate.
Technical Paper

Refinement of a Dedicated E85 1999 Silverado with Emphasis on Cold Start and Cold Drivability

2001-03-05
2001-01-0679
The University of Texas 2000 Ethanol Vehicle Challenge team remains focused on cold start, cold drivability, fuel economy, and emissions reduction for our 2000 Ethanol Vehicle Challenge entry. We used the stock PCM for all control functions except control of an innovative cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, use of a moddified version of the California Emissions Calibrated PCM, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. Additionally, we eliminated EGR at high load to improve power density. Major modifications, such as increasing the compression ratio or pressure boosting, were eliminated from consideration due to cost, complexity, reliability, or emissions penalties.
Technical Paper

Liquid Film Evaporation Off the Piston of a Direct Injection Gasoline Engine

2001-03-05
2001-01-1204
An optical access engine was used to image the liquid film evaporation off the piston of a simulated direct injected gasoline engine. A directional injector probe was used to inject liquid fuel (gasoline, i-octane and n-pentane) directly onto the piston of an engine primarily fueled on propane. The engine was run at idle conditions (750 RPM and closed throttle) and at the Ford World Wide Mapping Point (1500 RPM and 262 kPa BMEP). Mie scattering images show the liquid exiting the injector probe as a stream and directly impacting the piston top. Schlieren imaging was used to show the fuel vaporizing off the piston top late in the expansion stroke and during the exhaust stroke. Previous emissions tests showed that the presence of liquid fuel on in-cylinder surfaces increases engine-out hydrocarbon emissions.
Technical Paper

Particulate Characterization of a DISI Research Engine using a Nephelometer and In-Cylinder Visualization

2001-05-07
2001-01-1976
A nephelometer system was developed to characterize engine particulate emissions from DISI engines. Results were correlated with images showing the location and history of particulates in the cylinder of an optical engine. The nephelometer's operation is based upon the dependence of scattered laser light on particulate size from a flow sampled from the exhaust of an engine. The nephelometer simultaneously measured the scattered light from angles of 20° to 160° from the forward scattering direction in 4° increments. The angular scattering measurements were then compared with calculations using a Mie scattering code to infer information regarding particulate size. Measurements of particulate mass were made based upon a correlation developed between the scattered light intensity and particulate mass samples trapped in a 0.2-micron filter. Measurements were made in a direct injection single-cylinder spark ignition research engine having a transparent quartz cylinder.
Technical Paper

Fuel-Spray/Charge-Motion Interaction within the Cylinder of a Direct-Injected, 4-Valve, SI Engine

1998-02-23
980155
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The interaction between the high-pressure fuel jet and the intake air-flow was observed. Laser-sheet droplet imaging was used to visualize the in-cylinder droplet distributions, and a single-component LDV system was used to measure in-cylinder velocities. The fuel spray was visualized with the engine motored at 1500 and 750 rpm, and with the engine stopped. It was observed that the shape of the fuel spray was distorted by the in-cylinder air motion generated by the intake air flow, and that this effect became more pronounced with increasing engine speed. Velocity measurements were made at five locations on the symmetry plane of the cylinder, with the engine motored at 750 rpm. Comparison of these measurements with, and without, injection revealed that the in-cylinder charge motion was significantly altered by the injection event.
Technical Paper

Three-Dimensional Numerical Simulation of Flame Propagation in Spark Ignition Engines

1993-10-01
932713
Multi-dimensional numerical simulation of the combustion process in spark ignition engines were performed using the Coherent Flame Model (CFM) which is based on the flamelet assumption. The CFM uses a balance equation for the flame surface area to simulate flame surface advection, diffusion, production and destruction in a turbulent reacting flow. There are two model constants in CFM, one associated with the modeling of flame surface production and the other with the modeling of flame surface destruction. Previous experimental results on two test engines charged with propane-air mixtures were used to compare with the computations for different engine speeds, loads, equivalence ratios and spark plug locations. Predicted engine cylinder pressure histories agree well with the experimental results for various operating conditions after the model constants were calibrated against a reference operating condition.
Technical Paper

Initial Study of Railplugs as an Aid for Cold Starting of Diesels

1994-02-01
940108
The results of continuing investigations of a new type of ignitor, the railplug, are reported. Previous studies have shown that railplugs can produce a high velocity jet of plasma. Additionally, railplugs have the potential of assuring ignition under adverse conditions, such as cold start of an IDI diesel engine, because the railplug plasma can force ignition in the combustion chamber rather than relying on autoignition under cold start conditions. In this paper, engine data are presented to demonstrate the improved cold starting capability obtainable with railplugs. Data acquired using a railplug are compared to results obtained using no assist and using glow plugs. The engine used for this investigation will not start without glow plugs (or some starting aid) at temperatures below O°C, and the manufacturer's specification of the cold start limit for this engine using glow plugs is -24°C. Railplugs are able to initiate combustion at -29°C in one to two seconds with no preheating.
Technical Paper

The Texas Project: Part 3 - Off-Cycle Emissions of Light-Duty Vehicles Operating on CNG, LPG, Federal Phase 1 Reformulated Gasoline, and/or Low Sulfur Certification Gasoline

1996-10-01
962100
Off-cycle emissions from seven different types of 1994 light-duty vehicles were examined The test fleet consisted of 19 individual vehicles including a passenger car, two makes of light light-duty trucks, and five types of heavy light-duty trucks The driving cycles used for these tests were the US06(hard acceleration, high speed) cycle and the 20 °F FTP (the “Cold FTP”) Conventional FTPs were done for comparison Each vehicle was usually operated on at least two of the following CNG, LPG, Federal Phase 1 reformulated gasoline (FP1 RFG), and a low sulfur certification gasoline For both the conventional FTP and the US06 cycles, the alternative fuels produce statistically significant benefits in Ozone Forming Potential and exhaust toxics but the NOx emissions are not statistically different from those when operating on FP1 RFG with at least 90% confidence During Cold FTP tests, the emissions of CO and of toxics when operating on FP1 RFG are not statistically different from those when operating on a low sulfur certification gasoline In contrast the alternative fuels produce statistically significant benefits in the emissions of both CO and toxics compared to either of the gasolines during Cold FTP tests The Reactivity Adjustment Factor calculated from the present conventional FTP results for CNG agrees closely with the CARB value However, the present RAF for LPG is about half CARB s value, which is believed to be a consequence of the low propene in Texas LPG compared to the high propene in California LPG The effects of the test type on the emissions are also discussed
Technical Paper

The Texas Project: Part 1 - Emissions and Fuel Economy of Aftermarket CNG and LPG Conversions of Light-Duty Vehicles

1996-10-01
962098
The Texas Project is a multi-year study of the emissions and fuel economy of aftermarket conversions of light-duty vehicles, including passenger cars, light light-duty trucks, and heavy light-duty trucks. The test fleet, consisting of 86 mostly 1994 model year vehicles, includes eight different types of light-duty vehicles that have been converted to dual fueled operation for either CNG or LPG and corresponding gasoline controls. Virtually every type of aftermarket conversion technology (referred to as a “kit” for convenience) is represented in the test matrix: eight different CNG kits and seven different LPG kits, all of which have closed loop control systems. One goal of The Texas Project is to evaluate the different kits for each of the applications. One method used for evaluating the different kits was by assessing their potential for attaining LEV certification for each of the vehicle applications.
Technical Paper

The Texas Project: Part 2 - Control System Characteristics of Aftermarket CNG and LNG Conversions for Light-Duty Vehicles

1996-10-01
962099
The Texas Project involves the conversion of light-duty vehicles, up to and heavy light-duty trucks, to bi-fueled vehicles using commercially available aftermarket CNG and LPG conversion systems. The test fleet includes 68 dual fueled conversions. Virtually every type of aftermarket conversion technology for CNG and LPG was evaluated: eight different CNG and seven different LPG conversion “kits”, all of which are modern systems incorporating closed-loop control. The kits were installed and calibrated according to the manufacturer's guidelines and recommendations. The emissions when operating on the alternative fuel were compared to those when operating on certification gasoline to determine the “success” of the conversion. Many of these conversions, performed according to the manufacturer's requirements, were not “successful” (worse emissions than for gasoline operation). In almost all cases, the problem was NOx emissions that were too high when operating on the alternative fuel.
Technical Paper

CNG Compositions in Texas and the Effects of Composition on Emissions, Fuel Economy, and Driveability of NGVs

1996-10-01
962097
A survey of the CNG compositions within NGV driving range of Houston was performed. It was found that the statistics for the Texas CNGs were very similar to those from a previous national survey Based upon the present survey results, two extremes of CNG composition were chosen for a study of the effects of composition on emissions, fuel economy, and driveability. Two other CNG compositions were also included to provide for comparisons with the recently completed Auto/Oil Air Quality Improvement Research Program (AQIRP) and to extend the AQIRP database. One of the vehicles used in the AQIRP study was also used in the present investigation. Correlations were investigated for the relationships between the CNG composition and tailpipe emissions, fuel economy, and driveability.
Technical Paper

Improving Heavy-Duty Engine Efficiency and Durability: The Rotating Liner Engine

2005-04-11
2005-01-1653
The Rotating Linear Engine (RLE) derives improved fuel efficiency and decreased maintenance costs via a unique lubrication design, which decreases piston assembly friction and the associated wear for heavy-duty natural gas and diesel engines. The piston ring friction exhibited on current engines accounts for 1% of total US energy consumption. The RLE is expected to reduce this friction by 50-70%, an expectation supported by hot motoring and tear-down tests on the UT single cylinder RLE prototype. Current engines have stationary liners where the oil film thins near the ends of the stroke, resulting in metal-to-metal contact. This metal-to-metal contact is the major source of both engine friction and wear, especially at high load. The RLE maintains an oil film between the piston rings and liner throughout the piston stroke due to liner rotation. This assumption has also been confirmed by recent testing of the single cylinder RLE prototype.
Technical Paper

From Spark Plugs to Railplugs – The Characteristics of a New Ignition System

2004-10-25
2004-01-2978
Ignition of extremely lean or dilute mixtures is a very challenging problem. Therefore, it is essential for the engine development engineer to understand the fundamentals and limitations of existing ignition systems. This paper presents a new railplug ignition concept, a high-energy ignition system, which can enhance ignition of very lean mixtures by means of its high-energy deposition and high velocity jet of the plasma. This paper presents initial results of tests using an inductive ignition system, a capacitor discharge ignition system, and a railplug high-energy ignition system. Discharge characteristics, such as time-resolved voltage, current, and luminous emission were measured. Spark plug and railplug ignition are compared for their effects on combustion stability of a natural gas engine. The results show that railplugs have a very strong arc-phase that can ensure the ignition of very dilute mixtures.
Technical Paper

Analysis of Factors that Affect the Performance of Railplugs

2005-04-11
2005-01-0252
As natural gas engines are designed to operate leaner and with increased boost pressure, durability of the spark plugs becomes problematic. Among the various new ignition devices that have been considered to solve some of the problems facing spark plugs, railplugs appear to hold clear advantages in some areas. There are two types of railplugs: coaxial rail and parallel rail. This paper reports the results of an experimental study of various parameters that affect the performance of parallel railplugs. Their performance was quantified by the distance that the arc traveled along the rails from the initiation point. Travel along the rails is thought to be an important performance metric because rail-travel limits excessive local wear and produces a distributed ignition source which can potentially reduce mixture inhomogeneity induced ignition problems.
Technical Paper

A New Ignitior for Large-Bore Natural Gas Engines - Railplug Design Improvement and Optimization

2005-04-11
2005-01-0249
It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of large-bore natural gas engines. If these engines are to be use for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma arc. It requires care to properly design railplugs for this new application, however. For these engines, in-cylinder pressure and mixture temperature are very high at the time of ignition due to the high boost pressure. Hot spots may exist on the electrodes of the ignitor, causing pre-ignition problems. A heat transfer model is proposed in this paper to aid the railplug design. The electrode temperature was measured in an operating natural gas engine.
X